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Abstract—The fine-grained functional split is an effective 
way to solve the baseband function processing centralization 
and optical bandwidth saving in radio access networks (RANs). 
In this paper, to improve computing resource utilization, we 
investigate how to realize the fine-grained function placement 
and routing of 5G RAN slice with function reuse scheme in 
elastic optical networks (EONs). We first formulate a mixed 
integer linear programming (MILP) model to solve the 
problem exactly. The main optimization goal in the MILP 
model is to jointly minimize the average cost of computing, 
bandwidth resources and end-to-end latency. Then, a heuristic-
assisted deep reinforcement learning (HA-DRL) algorithm is 
proposed to obtain a near-optimal solution. In particular, the 
longest common subsequence-based path policy is utilized in 
the DRL to reduce the size of the action space and accelerate the 
training process. Finally, we evaluate the proposed MILP 
model and HA-DRL algorithm via extensive simulation. The 
results show that the proposed MILP model and HA-DRL 
algorithm outperform the benchmarks in terms of average cost, 
including the number of used processing pools (PPs), 
maximum frequency slot index (MFSI) on the lightpath and 
end-to-end latency of each slice request. 

Keywords—Flexible functional split, fine-grained function 
placement and routing, 5G RAN slice, heuristic-assisted DRL. 

I. INTRODUCTION 

To support the service scenarios of mobile applications in 
terms of enhanced mobile broadband (eMBB), ultra-reliable 
low-latency communication (uRLLC) and massive machine 
type communication (mMTC), next-generation radio access 
network (NG-RAN) architecture has been introduced [1]. 
These heterogeneous services will bring new challenges such 
as bandwidth, latency and networking flexibility for the NG-
RAN, which accelerates its evolution towards fine-grained 
units (FUs) [2]. In the 5G FU-based RAN architecture, the 
baseband unit (BBU) is further split into a set of FUs, taking 
into account the functional split options of 3GPP standard [3]. 
During the FU baseband processing function (BPF) placing 
process, the BPFs of the same type in different requests can 
be placed to the same processing pools (PPs) to share the 
common instance (i.e., FU) activated. Hence, the function 
reuse (FuRe) scheme can significantly reduce the amount of 
the required FUs activated on PPs. However, it inevitably 
increases the instance processing latency due to instance 
competition mentioned in our previous work [4]. Therefore, 
it is desirable to design an effective baseband function 
placement and routing (BFP&R) with the FuRe scheme in 
5G FU-based RAN architecture, which not only reduces the 
consumed instance resources but also satisfies the end-to-end 
latency requirement of each slice request. 

Some recent works have investigated the BFP&R issue in 
NG-RAN architecture through heuristic algorithms. In [5], 
the effective management policy for the agile distributed unit 
(DU) and centralized unit (CU) deployment was investigated, 
where a mixed integer linear programming (MILP) model 
and a graph-based heuristic algorithm were proposed to 
achieve energy-efficient BFP&R. Besides, the authors in [2] 
illustrated that the FU-based RAN architecture could benefit 
the baseband processing centralization and optical bandwidth 
saving for the BFP&R issue. However, the above works do 
not consider the FuRe scheme for the BFP&R in 5G RAN 
architecture, and hence the instance processing latency is 
simply set as a fixed value. Recently, deep reinforcement 
learning (DRL) method has been successfully applied to 
solve multi-resource management problems. The authors in 
[6] adopted the DRL to generate the BFP&R policy. This 
work mainly optimized the resource allocation while 
ignoring the end-to-end latency of slice requests. In [7], the 
DRL-assisted BFP&R was further considered the end-to-end 
latency of the 5G RAN slices over traditional metro-
aggregation wavelength division multiplexing (WDM) 
networks. However, the DRL-assisted fine-grained BFP&R 
with the FuRe scheme in 5G FU-based RAN architecture 
hasn’t yet been discussed. 

In this paper, the fine-grained BFP&R policy of 5G RAN 
slice with the FuRe scheme was addressed by leveraging 
MILP model and the proposed DRL-based algorithm in the 
elastic optical networks (EONs). The main contributions of 
this paper are listed as follows. 1) This paper investigates 
resource-efficient fine-grained BFP&R of 5G RAN slice 
with the FuRe scheme, jointly considering fine-grained 
BFP&R with the FuRe scheme, PP selection, and end-to-end 
latency control. 2) We formulate a MILP model for the fine-
grained BFP&R with the FuRe scheme in EONs, where the 
FU processing latency caused by the FuRe scheme is solved 
by M/M/1 model, which was not considered by most existing 
works. 3) We propose a heuristic-assisted DRL (HA-DRL) 
fine-grained BFP&R algorithm that minimizes the required 
computing and bandwidth resources, meanwhile satisfying 
the given end-to-end latency requirements. 4) The results 
show that our proposed algorithm can achieve higher 
resource efficiency and minimize end-to-end latency, 
compared with the benchmarks. 

II. ARCHITECTURE AND PROBLEM FORMULATION 

A. Network Scenario 

We consider flexible EONs as the 5G RANs to support 
“any-to-any” connection between radio units (RUs)/PPs and 
PPs. The EON is presented as a directed graph G(R, L), 
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where R and L denote the sets of PP nodes and fiber links, 
respectively. The upstream and downstream have a similar 
processing function according to the 5G RAN function split 
from 3GPP specification [1]. Therefore, in this paper, we 
only focus on the FU BFP&R for data plane in upstream. As 
shown in Fig. 1, in 5G FU-based RAN architecture, a 5G 
RAN slice contains five FUs (i.e., FU1-FU5), where FU1 is 
responsible for demodulation, FU2 is responsible for channel 
decoding, FU3 is responsible for media access control (MAC) 
that multiplexes data from different radio bearers, FU4 is 
responsible for radio link control (RLC) that includes 
segmentation and reassembly for higher layers, and FU5 is 
responsible for packet data convergence protocol (PDCP) 
that addresses problem of security. And b1, b2, b3, b4, b5 and 
b6 denote the bandwidth requirement before steering through 
the RU, FU1, FU2, FU3, FU4 and FU5, respectively. 

B. Computational Complexity 

To manage computational resource, we calculate the 
computational complexity of FU. The computational 
complexity of FU is expressed in Giga operations per second 
(GOPS), which can be defined as [2]: 

2(3 1/ 3 ) / 5
iFU iC A A M C Ly PRB               (1) 

where αi is the FU factor, A is the number of utilized antenna, 
M is the modulation bits, C is the coding rate, Ly is the 
number of multiple input multiple output (MIMO) layers, 
and PRB is the number of physical resource blocks. The M 
and C are determined from modulation and coding scheme 
(MCS) in [8]. 

C. Bandwidth Requirement 

After steering through a FU instance, the bandwidth 
requirement of a request would change. The number of 
required frequency slots (FSs) can be obtained by bi / 

(MLm×BFS’), i ∈{1,…,5}, where BFS’ is the bandwidth for 
each FS, i.e., 12.5GHz [4], and MLm is the level of the 
modulation format m[1, 2, 3, 4], corresponding to binary 
phase-shift keying (BPSK), quaternary PSK (QPSK), 8-
quadrature amplitude modulation (QAM), and 16-QAM, 
respectively. And bi can be calculated by parameters in [2]. 

D. Latency Model 

We calculate the required latency from five aspects: 1) 
Transmission latency: The transmission latency on fiber 
links which is linear with the length of fiber links. 2) OEO 

switching latency: For an arriving 5G RAN slice request 
via a light-path, optical signal should be switched to the 
electronic domain before its BFP in the PP, which results 
the latency of optical-electric-optical (OEO) and electric 
switching (i.e., Toeo = 20us [9]). 3) Processing latency: We 
adopt the processing latency model present in [4]. By 
assuming the request traffic as the input queue and the 
processing central processing unit (CPU) of each FU 
instance as the single server, the processing of request traffic 
data in each FU can be modeled as an M/M/1 queue. 
Therefore, the average processing latency of each FU s in 
PP r can be calculated as Ts,r = 1/(CKs - Us,r × Creach), ∀s, r, 
where CKs is the capacity limit of FU s, Us,r is the number of 
reuse of  FU s in PP r, and Creach is the reaching capacity of 
the slice requests. 4) Virtualization platform latency: We 
assume that starting a FU instance requires a virtualization 
platform latency Tv (i.e., Tv = 52us [2]). Since the FU 
instance is a kind of reusable resource, the system will not 
take action to start a new instance, where the FU instance of 
same type has already been started in the PP. 5) Interface 
encapsulation latency: A reconfigurable and general 
interface for data encapsulation is introduced in our network 
architecture. In this paper, we evaluate the interface 
encapsulation/de-capsulation latency referred to enhanced 
common public radio interface (eCPRI) [2]. The general 
interface latency is expressed as: Tencap = Lp / bi, where Lp 
denotes the length of a frame.  

E. Problem Formulation 

In 5G FU-based RAN architecture, the FUs can be placed 
into the same or different PPs and chained in the predefined 
order: [RU, FU1, FU2, FU3, FU4, FU5, data center (DC)] to 
generate a service chain for the BFP of the slice request. 
Thus, a RU-DC slice request is denoted as: [RU, (b1, FU1), 
(b2, FU2, (b3, FU3), (b4, FU4), (b5, FU5), b6, DC]. Fig. 2 
shows an example of deploying the RU-DCs in a 8-node 
EONs. Assume there are two requests Req1[1, (2, FU1), (1, 
FU2), (1, FU3), (1, FU4) (1, FU5), 1, 8] and Req2[1, (1, FU1), 
(1, FU2), (1, FU3), (1, FU4), (1, FU5) 1, 8]. Fig. 2(a) shows 
a policy where Req1 takes path 1→2→4→6→8 and deploys 
FU1 and FU2 on PP2, FU3 and FU4 on PP4 and FU5 on PP6. 
Req2 goes 1→2→4→6→8 and reuses FU1, FU2 and FU3, 
FU4 and FU5 that have been deployed on PP2, PP4 and PP6, 
respectively. The FuRe scheme of FUs inevitably increased 
processing latency for Req1 and Req2. To reduce the 

 
Fig. 1. 5G FU-based RAN architecture, where split options follow the 3GPP specification [3]. 

 
Fig. 2. An example of RU-DC deployment in EONs: (a) Deployment policy 1; (b) Deployment policy 2. 
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processing latency, another policy is presented in Fig. 2(b), 
where Req2 takes path 1→3→5→7→8 and instantiates a 
new FU1 and FU2 on PP3, a new FU3 and FU4 on PP5 and 
a new FU5 on PP7. In this case, two requests need to be 
deployed in more PPs (i.e. 6 PPs). Therefore, for the efficient 
resource utilization and satisfactory end-to-end latency, it is 
necessary to design a well BFP&R policy with the FuRe 
scheme that maximizes the resource utilization while 
ensuring the required end-to-end latency. 

III. MILP FORMULATION 

In this section, we formulate a MILP model to determine 
the placement of FUs with the FuRe scheme to minimize the 
computing, bandwidth resources and the end-to-end latency.  

(A) Notations: 
B, L Set of RUs and optical links 
R,F Set of PPs, and FSs in each link 

S Set of service functions (SFs)  (e.g., s = 1 for RU, s = 2 
for FU1,…, s = 6 for FU5, s = 7 for DC) 

Cmax Computational capacity of each PP r 
Tb End-to-end latency requirement of RU b 

TCb 
Transmission latency from RU b to its directly 
connected PP r 

TEs Encapsulation latency after SF s processed 
Tv Latency of virtualization platform in each PP r 
Ti,j Transmission latency of link e(i,j), i,j∈R 
Toeo Latency of OEO operation 
Ts,r The processing latency of SF s in PP r 
Tb,s The processing latency of SF s for RU b 
CKs Computational demand of SF s 
RBs FSs demand of SF s 
MFSI Number of the maximum FS index 
Num A large positive integer 

(B) Variables: 
Er Equals 1 if DC is deployed at PP r 
Fb,r Equals 1 if RU b is directly connected to PP r 
Dr Equals 1 if PP r is used 
Hb,r Equals 1 if RU b is processed in PP r 
Qs,r Equals 1 if SF s is processed in PP r 
Us,r Number of reuse of FU s in PP r 
Ob,s,r Equals 1 if SF s of RU b is processed in PP r 
Zb,s,r Equals 1 if the last SF s of RU b to be processed in PP r 
Ωi,j,f Equals 1 if FS f of link e(i,j) is used 

Xb,s,i,j 
Equals 1 if RU b is carried on the link e(i,j) with the 
previous SF s being processed 

Ψb,s,i,j,f 
Equals 1 if RU b is carried on the FS f on the link e(i,j) 
with the previous SF s being processed 

Ls,r,b Equals 1 if Us,r = b, where b∈B 

(C) Minimum Objective: 

, , , , ,
, , , ,

, , , ,
, | |, , | | | |,

    2

r b s i j i j b r oeo
r b s i j b r

b s r s b s s r v
b s S r b s S s S r

D MFSI X T H T

Z TE T Q T

  

  


       




      


  

  
(2) 

The MILP objective is to simultaneously minimize the 
computing, bandwidth resources and the end-to-end latency. 
The first part is to minimize the number of used PPs. The 
second part is to minimize the MFSI and the last part is to 
minimize the end-to-end latency. We set α = 1/|R|, β = 1/|F|, 
γ = 1/(∑Tb)/|R| [2]. The weights α, β, γ are used to control 
the contribution of each resource to the objective function. 

(D) Constraints: 

 Routing constrains: 

 

,

, , , , , ,
, ,

1,   if  1

1,   if  1 ,  ,

0,  others

b r

b s i r b s r j r
i r s S r j s S

F

X X E b r
   

 
   



     (3) 

 , , , , , , 1,  , ( ),b s i j b s j i
s S s S

X X i j i j b
 

                (4) 

Eq. (3) ensures that a link should be established from the RU 
to DC and avoid loop formation with Eq. (4).  
 Capacity constrains: 

 , , ,
,

| |,  , ( )b s i j s
b s S

X RB F i j i j


                   (5) 

 , , | |,  , ( ),i j ff MFSI F i j i j f                 (6) 

 ,
1

,  s r s max
s S

Q CK C r
 

                          (7) 

Eq. (5) and (6) ensure that data carried on link e(i,j) and 
MFSI cannot exceed the number of FSs in each link, while 
each PP computational capacity is ensured in Eq. (7). 
 Latency constrains: 

, , , , , , ,
, , | |,

, ,
| | | |,

2

      ,  

b s i j i j b r oeo b s r s
s i j r s S r

b s s r v b b
s S s S r

X T H T Z TE

T Q T TC T b



 


     




     


  

 
  (8) 

, ,1/ ( )  ,s r s s r reachT CK U C s r   ，                (9) 

Eq. (8) ensures that the end-to-end latency requirement from 
RU to DC is satisfied. Eq. (9) calculates the processing 
latency of each FU s in  PP r based on the reuse time 
considering the M/M/1 model due to the instance 
competition [4]. Since Eq. (9) is a nonlinear constraint, we 
could linearize it by introducing an auxiliary variable Gs,r = 
Ts,r × Us,r, ∀s, r. 

, , , , ,( 1) ( 1),  ,s r s r s r b s r
b

Num Q U b L Num Q s r                       

(10) 

, , , ,1/ ,  ,s r s r s r b
b

T b G L r s                      (11) 

 , , , ,1 ( 1) 1 ( 1),  ,s r s r b s r
b

Num Q L Num Q s r          (12) 

, , ,

,

( 1) 1

                       ( 1),  ,
s r s r s s r reach

s r

Num Q T C G C

Num Q s r

      

    
           (13) 

Eq. (10)-(13) list the constraints for the variable Gs,r . Note 
that Eq. (11) is also a nonlinear constraint, which is further 
linearized by introducing an auxiliary variable Ps,r,b = Gs,r × 
Ls,r,b, ∀s, r, b. 

, , , , , ,( 1) ,  , ,s r s r b s r b s rG Num L P G s r b               (14) 

, , , , ,( 1) 1/ ( 1),  ,s r s r s r b s r
b

Num Q T b P Num Q s r         
            (15) 

Eq. (14)-(15) list the constraints for the variable Ps,r,b. 

, , , , ,  ,1b s b s r s r
r

T O T b s S                      (16) 

Eq. (16) calculates the processing latency of each FU s in 
request RU b. It is worth note that Eq. (16) is also a 
nonlinear constraint. Next, we linearize it by introducing an 
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auxiliary variable ab,s,r  = Ob,s,r × Ts,r.  

 , , ,0 ,  ,1 ,b s r s ra T b s S r                       (17) 

 , , , , , , ,1 , ,1 ,s r b s r b s r b s rT Num O a Num O b s S r              

(18) 
Eq. (17)-(18) list the constraints for variable ab,s,r. Then, we 
convert Eq. (16) into Eq. (19). 

, , , ,  ,1b s b s r
r

T a b s S                         (19) 

 FS allocation constrains: 

  , , , , , , , ,  , , ,b s i j f s b s i j
f

RB X b s i j i j              (20) 

  

 

, , , , , , , ,
' min ,| |

, , , , 1

(

                      1),  , , , ,

s

b s i j f s b s i j f
f f f RB F

b s i j f

RB Num

b s i j i j f

 


  



  

   


      (21) 

, , , , , , , , , ,
, | | , | |

,  , ( ),b s i j f i j f b s i j f
b s S b s S

Num i j i j f 
 

            

(22) 
Eq. (20) ensures that a RU is allocated FSs equal to the 
number of FS requested. Eq. (21) ensures that a set of 
continuous FS’ are selected for RU b after placing SF s. Eq. 
(22) ensures that the spectrum non-overlapping limitation. 
 FU placement constrains: 

,
, ,

, 1
 ,  ,

,
b r

b s r
r

F s
O b r

E s S


  

                       (23) 

 , , 1,  ,b s r
r

O b s                                 (24) 

 , ', , , , ,
, ' | |

,  if 1,  , ,b s r j b s r b r
j s s S

X O F b s r
 

             (25) 

  
1 2

1 2

, , , , , , , ,
,1 ,

, , ,

2

           1,  if 0,  , ,

b s r b l i r b l r j
i l s j s l S

b s r b r

O X X

O F b s r

   

  

   

 
              (26) 

 
, , , , , 1,

, ,

2 1

            1,  ,1 -1,

b s r b s r b s r

b s r

Z O O

Z b s S r DC

   

     
        (27) 

Eq. (23) ensures that the source and destination nodes of the 
slice request are its RU and the DC, respectively. Eq. (24) 
ensures that each SF is placed once in EON. Eq. (25) and (26) 
ensure that the SF s of RU b can be processed in its direct 
adjacent PP or other PPs. Eq. (27) is relevant to the interface 
encapsulation. 
 Reuse constrains: 

 , , , , 1 ,s r b s r
b

U O s S r                       (28) 

 , , , , 1 ,s r s r s rQ U Num Q s S r                (29) 

Eq. (9)-(10) count the value of the reuse times of each SF s 
on each PP r. 
 PP node constrains: 

 , ,
,1

,  r b s r r
b s S

D O Num D r
 

                   (30) 

, , , , , , , , , , ,  , , | |,b r b s i r f b s r j f b r
i r r j

H H b r s S f 
 

        (31) 

Eq. (30) ensures that if PP r is used. Eq. (31) ensures that 
bypassing data shouldn’t change its FS f of link e(i,j).  

IV. HA-DRL METHODOLOGY 

In this section, a HA-DRL algorithm is developed for the 
FU BFP&R with the FuRe scheme in EONs, where the state, 
action spaces, and reward function are defined as follows. 

1) State Representation: A HA-DRL FU BFP&R with 
the FuRe scheme is proposed in Algorithm 1. In lines 1-2, 
for each episode, we initialize a state for the slice requests to 
be deployed. In lines 3-4, receiving a RU-DC request Req(s, 
d), we first calculate the K shortest paths between s and d as 
Ps,d{p1, p2,…, pk} and get the FUs already deployed on path 
pk as sequence Φk. Then, the path pLBP that has maximum 
LCS degree [10] between Φk and FUs is selected as the pLBP. 
The process is shown in Algorithm 2. In line 5, to facilitate 
the decision making of the DRL-agent, a request RU-DC 
request is decomposed into 5 units, i.e., (b1, FU1), (b2, FU2), 
(b3, FU3), (b4, FU4), (b5, FU5, b6) and handle them in turn. 
In line 6, the DRL agent obtains the current state for the 

Algorithm 1: HA-DRL policy 
1.For each episode do 
2.   Initialize state St; 
3.   For each 5G FU-based RAN request RU-DC do 
4.      Find a path pLBP according to Algorithm 2; 
5.      Decompose request RU-DC into 5 elements; 
6.      Obtain current state St; 
7.      For each element do 
8.          Generate a random decimal c∈[0,1]; 
9.          If c > ε, then 
10.             Select a random action at from the path pLBP; 
11.        Else 
12.             Select at = argmaxaQ(St , a), where the at from the path pLBP; 
13.        End if 
14.        If  the PP at available resource is not enough, then 
15.            Node mapping fails; 
16.        Else 
17.            Node mapping succeeds; 
18.        End if 
19.        If node mapping succeeds, then 
20.             Execute Algorithm 3 according to at; 
21.             If link mapping succeeds, then 
22.                  Execute Algorithm 4 according to at; 
23.                  If latency check passed, then 
24.                       Deploy the FU instance and assign FSs required with 

Algorithm 3 and get reward rt and next state St+1; 
25.                  Else  Get penalty rt and next state St+1; 
26.                  End if 
27.             Else  Get penalty rt and next state St+1; 
28.             End if 
29.         Else  Get penalty rt and next state St+1; 
30.         End if 
31.         Record sequence (St, at, rt, St+1) in the memory; 
32.     End for 
33.  Randomly select mini-batch of sequence (St, at, rt, St+1) from 

memory Λ; 
34.    Update DNN with the loss function if the number of data exceeds 

the threshold. 
35.  End for   End for 

 
Algorithm 2: LBP policy 
Input: Req(s, d); 
Output: pLBP; 
1. Calculate Ps,d{p1,p2,…,pk}according to s and d; 
2. for k = 1 to K do 
3.      Get FUs already deployed on pk as sequence Φk; 
4.      Calculate LCS degree between Φk and FUs [10]; 
5. End for 
6. Select pk with maximum LCS degree; 
7.  pLBP = pk; 
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current  FU of the current slice request in the t-th time step, 
which is comprised of the FU request information and the 
current FU-based RAN information. It can be defined as 

 , , , , ,  t used avail total sS PP C FMSI T A RU           (32) 

where PPused denotes which PP nodes have been used for 
FU placement, Cavail is the available computational resource 
in each PP, FMSI is the current MFSI, Ttotal is the 
accumulated latency at present for deploying the previous 
FU, and As is a set of actions for deploying the previous FUs, 
and RU is the starting point of the slice request. 

2) Action Definition: In lines 7-13, the agent selects an 
action with ε-greedy strategy. We utilize LBP policy to 
reduce the size of the current action space. In lines 14-18, if 
PP at has enough resources to deploy current FU, the node 
mapping of action at succeeds. In lines 19-20, we apply a 
link mapping policy to deploy the FSs demand as shown in 
Algorithm 3. For each link l∈L, the index of the last 
employed FS on the link l is defined as Fmax 

l . Similarly, the 
index of the last employed FS on the path pk is defined as F
max 
pk , where Fmax 

pk = max{Fmax 
1 , Fmax 

2 ,…, Fmax 
l }, l∈pk. In this policy, 

for two PPs (i.e., PP i and PP j (i,j∈R)), we first calculate 
the K shortest paths between them, denoted as Pi,j{p1, p2,…, 
pk}. Then, if |F| ≥ (min(Fmax 

P1 , Fmax 
P2  ,…, Fmax 

Pk ) + bk), the link 
mapping succeeds and we select the path pk which has 
minimum Fmax 

Pk , and bk required FSs are assigned on fibers in 
the path pk. In lines 21-22, after performing the action at to 
the EON, we need to check that all deployed requests in the 
EON continue meeting their end-to-end latency requirement. 
In lines 2-7 of Algorithm 4, we calculate the end-to-end 
latency Dmap 

b  of each request RU b that has been deployed in 
the EON and compare it to its end-to-end latency threshold 
Tb. If the total latency of each request RU b exceeds its end-
to-end latency threshold, the latency check of action at fails. 

3) Reward Description: For each action at that satisfies 
node, link and latency constraints, we will deploy the FU 
instance and assign FSs required with Algorithm 3 and set a 
big reward (lines 23-24), which sums of the newly activated 
PP Xt, consumed FMSI Yt and end-to-end latency Zt. On the 
contrary, we set a reward rmax for an action that cannot 
fulfill all constraints (line 25-30). Therefore, the reward 
function is shown in Eq. (33). 

max

( ),  if  is valid

,  if  is invalid
t t t t

t
t

X Y Z a
r

r a

       
 

          (33) 

4) Training Mechanism: In line 31-32, we record data 
(St, at, rt, St+1) in the memory Λ. To train the HA-DRL 
model, the deep neural network (DNN) parameters are 
updated by loss = E{[rt + μ × max Q (st+1 , at+1) - Q(st , at)]

2}. 
where rt + μ × argmaxQ(St+1, at+1) is the optimal Q-value, μ 
denotes discount rate and Q(St, at) denotes the Q-value 
before updating. In this work, we implement double deep Q 
network (DDQN) as our DRL algorithm. In lines 33-34, a 
mini-batch of sequences (St, at, rt, St+1) is selected from 
memory Λ to train the DDQN model, then the gradient 
descent algorithm is used to update the DNN parameters. 

V. PERFORMANCE EVALUATION 

We perform the simulations to evaluate the performance 
of our proposed MILP model and HA-DRL algorithm with 
9-node network and 30-node topology, respectively [5]. 
Three baseline benchmarks are considered for comparison, 
i.e., decentralized LBA (D-LBA), centralized LBA (C-LBA) 
[10], and shortest-path and random algorithm (SRA). In the 
simulation, for the wireless part, we consider that each RU 
includes 32 antennas, 8 MIMO layers, 100 MHz wireless 
spectrum and MCS equals 23 [2], [8]. For small-scale 
network, each optical link ranges in [5, 30] km, and available 
FSs is 15. For large-scale network, each optical link ranges 
in [5, 30] km, and available FSs is 250.  

Fig. 3 (a) demonstrates the results of the average cost, 
which is calculated by Eq. (2). We find that the MILP model 
achieves the lower average cost, followed by the HA-DRL 
algorithm. The baseline benchmarks, the D-LBA, C-LBA 
and SRA have higher average costs. This is because the 
MILP can obtain optimal solution by exhaustive search. 
Meanwhile, the HA-DRL utilizes LBP policy as performance 
guarantees, resulting in the HA-DRL solution being the 
closest to the optimal MILP solution. 

To further validate the effectiveness of our proposed HA-
DRL algorithm, the simulation results under the 30-nodes 
network topology are shown in Fig. 3 in terms of average 
cost (Fig. 3(b)), number of used PPs (Fig. 3(c)), FMSI (Fig. 
3(d)) and total latency (Fig. 3(e)). As shown in Fig. 3(b), all 
three algorithms consume more average costs as the number 
of request increases, because more requests would consume 
more resources. In Fig. 3(c), with the increasing number of 
requests, all three algorithms consume more PPs, where PPs 
consumption is the lowest with the proposed HA-DRL. The 
SRA consumes the most PP resources, because it lacks the 
ability to proactively FuRe the already deployed FUs.  

Fig. 3(d) gives out results on the MFSI. Thanks to the 
DRL training, the proposed HA-DRL algorithm achieves 
similar FMSI performance as D-LBA and C-LBA algorithms. 
Note that SRA outperforms other algorithms in terms of 
FMSI since it always chooses the shortest path. However, the 
overall average cost of SRA remains the worst performance 
because of too much wastage of PP resources. Furthermore, 
the proposed HA-DRL achieves a better balance between PP 
consumption and FMSI by the aid of the effective DRL 
training. We can observe in Fig. 3(e) that total latency 
increases with the number of RUs because of the more 
transmitted data traffic. We can also observe that SRA needs 

Algorithm 3: Link mapping policy 
Input: The given last PP i and the selected PP at, required FS number bk; 
1.  Calculate K shortest paths between PP i and PP at; 
2.  For k = 1 to K do 
3.      Calculate Fmax 

Pk ; 
4.  End for 
5.  If |F| ≥ (min{Fmax 

P1 , Fmax 
P2  ,…, Fmax 

Pk  } + bk), then 
6.      Link mapping succeeds and select path pk with minimum Fmax 

Pk ; 
7.      Assign FSs indexed from Fmax 

pk +1 to Fmax 
pk +bk on all links in path pk; 

8.  Else 
9.      Link mapping fails. 
10.End if 

 
Algorithm 4: Latency check policy 
1. For all the requests RU b∈B that are already deployed do 
2.    Calculate the end-to-end latency Dmap 

b  of requests RU b; 
3.    If Dmap 

b  < Tb, then 
4.         Delay check passed; 
5.    Else 
6.         Delay check failed; 
7.    End if   End for 
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the minimum latency followed by D-LBA, C-LBA and HA-
DRL. That is because D-LBA and C-LBA and HA-DRL 
preferentially reuse the already deployed FU, resulting in 
higher processing latency. 

Fig. 3(f) shows the trend of average cost against training 
iterations for HA-DRL-based algorithm. The training begins 
with high average cost because of the random exploration, 
then decreases quickly for improving algorithm, and finally 
converges to a cost average cost at 0.78. This means that 
good convergence performance of HA-DRL algorithm is 
achieved. It is observed that by iterations 500, the average 
cost obtained by HA-DRL is lower than the other benchmark 
heuristics and the training curves become flatten and 
converged after the iteration number is 900. 

VI. CONCLUSION 

This paper investigated the resource-efficient FU- 
BFP&R of 5G RAN slice problem with the FuRe scheme in 
the EONs. We first introduced the 5G FU-based RAN 
architecture and formulated the FU-BFP&R issue with the 
FuRe scheme. Then, a HA-DRL algorithm was proposed to 
obtain a near-optimal solution. Particularly, the LBP policy 
was utilized to limit the optional space of DRL agent 
exploration, which accelerated the training process. In 
addition, the MILP model was formulation to search for the 
optimal solution, meanwhile three existing heuristic 
algorithms were also employed as the benchmarks. Finally, 
the simulation results validated our proposed MILP model 
and HA-DRL algorithm can achieve higher resource 
efficiency and minimize end-to-end latency compared with 
other benchmarks.  
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Fig. 3. (a) Average cost in small-scale network; (b) Average cost in large-scale network; (c) Number of used PPs; (d) FMSI; (e) Total latency; (f) Training 
results of DRL. 
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