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Abstract: We propose a heuristic-assisted deep reinforcement learning framework for resource-
efficient and QoS-guaranteed 5G RAN slice migration in EONs, which can optimize the spectrum 
resource consumption, traffic migration, and power consumption, simultaneously. 
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1. Introduction 
In 5G radio access networks (RAN), thanks to the recent development of software-defined networking (SDN) and 
network function virtualization (NFV), the baseband processing functions (e.g., DU and CU) in a RAN slice can be 
realized through virtual machines (VMs) [1] using generic commercial processing pools (PPs) placed in the metro 
aggregation networks (MAN) [2]. It allows for flexible scheduling of these slice requests. Especially, for time-
varying service loads, the low-load PPs may be deactivated during service valley and the corresponding virtualized 
DUs (vDUs) and vCUs running on them may be migrated to another higher-load PP, to improve the PP utilization 
and save energy. However, once the vDU/vCU migrates, the light paths connecting them would require re-
configuration, leading to temporal service interruption for the slice users, and thus degrading the users’ QoS. 
Therefore, for resource-efficient and QoS-guaranteed RAN slice migration under time-varying loads, a dynamic 
vDU/vCU scheduling scheme is required that minimizes both the number of active PPs and the amount of migrated 
traffic. Recently, some works have addressed the similar deployment problem in WDM-based 5G metro aggregation 
networks [2-3], but the degraded QoS caused by the vDU/vCU migration was not considered. Some papers (e.g., [4]) 
have optimized the slice migration via traffic prediction and resource reservation, but the relevant energy efficiency 
issue was not investigated. Based on our previous work [5], we redesigned the heuristic-assisted (HA)-DRL method 
for the 5G dynamic vDU/vCU scheduling, where the node placement is more crucial than the light path provision. It 
is because that the different PP selections for the vDU/vCU have great impact on the service latency and spectrum 
utilization. Specifically, the different PP selections lead to the different routing and length of the light paths 
connecting the PPs, and thus cause the different service latency and spectrum occupation state. Hence, it is 
necessary to jointly optimize the spectrum utilization and power consumption for the slice migration, under the 
latency constraint. 

In this paper, we redesigned the HA-DRL to address the above challenges. To ensure the latency requirement of 
each request, a polling-based update mechanism for the action space is introduced once a slice request is deployed. 
In the action apace, candidate PP sets are established for all the pending requests, which should satisfy the latency 
and capacity constraints. To jointly optimize the spectrum utilization and power consumption, a slice decomposition 
method is proposed, where the computing resource of the candidate PP and the spectrum usage on light paths 
connecting the PP are provided to the HA-DRL agent as the state input to make the optimal vDU/vCU deployment 
decision. Simulation results show that the proposed HA-DRL framework can achieve the lowest cost for all the 
considered cases. The x-haul traffic migration and spectrum resource consumption can be reduced significantly with 
a slight cost of the power consumption increment. 

2.  Problem Formulation 
We consider an elastic metro aggregation optical network as the substrate network, which offers agile bandwidth 
management and high spectrum efficiency [6], as shown in Fig.1 (b). It comprises NP PP nodes, ND DC (5GC) nodes, 
and E links. Each PP node hosts several GPPs, which are used for the virtualization of DU/CUs. Generally, an 
Active Antenna Unit (AAU) is connected to one adjacent PP as a source node of the slice. Each fiber link comprises 
serval frequency slots (FS’) and each FS has a bandwidth of 6.25GHz. Each RAN slice request is denoted as Ri (si, 
di, i

FBW , i
MBW , i

BBW , i
DUC , i

CUC , i
FD , 2

i
E ED ), where si and di are the source and destination node (i.e., DC), respectively. 

i
FBW , i

MBW , i
BBW  are the required bandwidth of fronthaul (i.e., AAU-vDU), midhaul (i.e., vDU-vCU), and backhaul 

(i.e., vCU-5GC), respectively. i
DUC  and i

CUC  are the computing resource required for DU and CU processing, 
respectively. i

FD , 2
i
E ED  denote the fronthaul and end-to-end latency requirement of the slice request, respectively. 
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When deploying the slice requests, the routing constraint, PP/GPP and x-haul capacity constraint, service latency 
constraint, and DU-CU deployment constraint should be all respected. 

For each request, its required computing resource and x-haul bandwidth vary with time in Fig.1 (c) [2], where 12 
time periods are considered, each lasting for 2 hours. In each time period t, the system power consumption (PC) can 
be calculated by 0 ,,t full n half n n pn n n p

PC P F P H P G= ⋅ + ⋅ + ⋅∑ ∑ ∑ , where Fn=1 denotes PP n working in full-power mode with 
Pfull (2200W) for hosting vDU/vCUs, and Hn=1 means PP n working in half-power mode with Phalf (1100W) when 
only data transmission devices are on. Gn,p=1 when GPP p in PP n is activated with the basic PC P0 of a GPP 
(100W). The migration traffic (MT) can be calculated by , , , , , , ,i t i t i t i t i t i t

t F F M M B Bi
MT BW Z BW Z BW Z= × + × + ×∑ where ,i t

FZ , ,i t
MZ , 

and ,i t
BZ  are binary variables denoting if fronthaul, midhaul, and backhaul of Ri are migrated. Maximum frequency 

slot index (MFSI) is a performance matrix used to represent the spectrum resource consumption in the network [7]. 
It can be calculated by maxmaxt e E eMFSI f∈= , where max

ef  is the maximum FS index in link e. To jointly optimize the PC, 
MT and MFSI, the cost function can be formulated as ( )C t t t

t ref t ref t reft
PC PC MT MT MFSI MFSI= + +∑ , where t

refPC , t
refMT , 

and t
refMFSI  are the reference results obtained from the baseline heuristic algorithms, which can help the DRL agent 

quickly learn a better RAN slice migration policy based on the reference algorithms, hence realizing the “HA-DRL”. 

3. Methodology 
For easy configuration, we decompose a slice request Ri into two sub-requests (SRs): 1) i

DUR [si (i.e., source PP) , di  
(i.e., CU or destination DC), i

FBW , i
MBW , i

DUC , i
FD , 2

i
E ED ] and 2) i

CUR [si (i.e., DU or source PP), di (i.e., destination 
DC), i

MBW , i
BBW , i

CUC , 2
i
E ED ]. Fig. 1 (a) shows the training diagram of the proposed HA-DRL method to serve these 

SRs, where the state, action, and reward are defined as follows: (1) State: The state space comprises the resource 
usages of the candidate PPs and FS usages on the corresponding minimum MFSI paths. Additionally, the request 
information, including the required computing resources, number of required FS’ and history PP indicator are 
provided. (2) Action: The action space consists of the history PP node (if available) and M or M-1 most loaded PPs 
in K shortest paths connecting (si, di). Once a slice request is deployed, the action space is updated timely. (3) 
Reward: The reward t t t t

i ref ref refr PC PC MT MT MFSI MFSI= ∆ + ∆ + ∆  is calculated based on instant performance metrics, 
where ,PC∆  MT∆ and MFSI∆  are the PC, MT and MFSI increment caused by SRi deployment. Algorithm 1 shows 
the training process in each iteration in detail. The policy gradient (PG) method is adopted for DRL training [8]. A 
DNN is used as the policy network, where the input is the state si and output is the probability distribution of actions 

( )|i ia sθπ . The θ is the policy network’s parameters. We use the REINFORCE with baseline algorithm [8] to 
iteratively update θ. The update of gradient uses rmsprop algorithm. 

Algorithm 1   HA-DRL Training Algorithm 
Step 1:  In each time period t, apply baseline algorithms to acquire the reference data ,t t

ref refPC MT  and t
refMFSI . 

Step 2: Apply the polling-based update for each SRi ( i
DUR or i

CUR ) to get the available candidate PP set Ni. Check if a special 
case occurs when the |Ni|=1 due to capacity or delay constraints, the corresponding SR can be directly deployed on the 
designated PP node and the lightpath with the smallest MFSI. 
Step 3: Denote the available resource in each PP n as AR(n). Then, calculate the available resources of the Ni for SRi as 

( )
i

i
avail n N

C AR n
∈

=∑ . Sort the SRs by i
availC in ascending order. For the SRi with the minimum i

availC , construct the state space 
and action space, and acquire the node and corresponding lightpath deployment decision from the DRL agent. Deploy SRi and 
obtain rewards. If all the SRs are served, go to step 4, otherwise, go to Step 2 to serve the rest of SRs. 
Step 4: Perform routing adjustment for each slice requests: Replace the x-haul’s lightpath with the shortest path only if MFSI 
remains unchanged. Go to Step 1 for handing SRs in the next time period. 

 
Fig. 1 (a) The training diagram of HA-DRL, (b) System architecture of elastic metro access/aggregation optical networks, (c) traffic profile. 
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Two baseline heuristics are designed to assist the DRL training. The SR Reallocation presented in Algorithm 2 
aims at optimizing the PC and MFSI, because in each time period, all requests need to be re-configured. Note that 
the SR Adjustment can simultaneously optimize the PC, MT, and MFSI. It is due to the fact that in the beginning of 
each time period, it migrates a part of SRs from the overloaded PP to the un-overload PP with Algorithm 2. Then, it 
would try to deactivate the least-loaded PP nmin to save power by reallocating all the SRs the PP serves. The 
reallocation process would be terminated once any SR cannot be reallocated. When all SRs are well provisioned, the 
routing adjustment would be applied too, just as in Step 4, Algorithm 1. 
Algorithm 2   Baseline heuristic: SR Reallocation Policy 
Step 1: In each time period t, sort SRs in ascending order in turn by si-di distance and computing resource requirement. For each 
SRi, get K shortest paths connecting si and di. From K paths, get available PP set Ni, where each PP in Ni satisfies all the delay, 
and capacity constraints. Find the most loaded PP nmax in Ni, and deploy the required vDU/vCU in nmax. Connect (si, nmax), (nmax, 
di) with the path that leads to the smallest MFSI. If all the SRs are served, go to Step 2, otherwise, repeat Step1. 
Step 2: Perform similar routing adjustment as Algorithm 1. Then, go to Step 1 for handing SRs in the next time period. 

4.  Performance Evaluation 
The proposed HA-DRL is compared against the two baseline heuristics (i.e., SR reallocation and SR adjustment). 
We consider a small-scale 9-node network and a large-scale 30-node network for performance evaluation. For both 
networks, each optical link has a length between 10 and 30 km. Each AAU is set as 4 antennas, 100MHz, two 
MIMO layers, and MCS 23. In 9-node network, each PP comprises 1 GPP and each GPP is set as 4000 GOPS. Each 
optical link has a capacity of 20 FS’. In 30-node network, each PP comprises 2 GPPs and each GPP is set as 10000 
GOPS. Each optical link has a capacity of 100 FS’. Two types of 5G services – eMBB and uRLLC are considered. 
The latency requirement of these services is provided in table I.  

In Figs. 2(a) and (b), it is observed that, for both eMBB and uRLLC services, the proposed HA-DRL achieves 
the lowest cost compared with the two baseline heuristics in both networks. Specially, for eMBB40 service, the PC, 
MT, and MFSI training curves are depicted in Figs. 2(c)-(f). Unlike the heuristic algorithms that only apply fixed 
policies, through iterative training, HA-DRL is able to learn that the best way to reduce cost is by trading PC for MT 
and MFSI. Compared with the SR adjustment, up to 86% MT and 30% MFSI reduction are achieved with only 
slightly higher PC (i.e., 12 % higher PC).  

5.  Conclusion 
An HA-DRL framework is proposed for the resource-efficient and QoS-guaranteed 5G RAN slice migration, which 
jointly optimizes the PC, MT, and MFSI under the service latency constraint in EONs. Simulation results validate 
the effectiveness of the proposed HA-DRL with a polling-based update scheme and a slice decomposition method. 
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Fig. 2 Simulation results: average cost in (a) 9-node network, (b) 30-node network; Training process for eMBB40: (c) Average cost, (d) PC, 
(e) MT, (f) MFSI; Network topologies: (g) 9-node network, (h) 30-node network 
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