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Abstract: We propose and experimentally demonstrate an intelligent nonlinear compensation
method using a stacked autoencoder (SAE) model in conjunction with principal component
analysis (PCA) technology and a bidirectional long-short-term memory coupled with ANN
(BiLSTM-ANN) nonlinear equalizer for an end-to-end (E2E) fiber-wireless integrated system.
The SAE-optimized nonlinear constellation is utilized to mitigate nonlinearity during the optical
and electrical conversion process. Our proposed BiLSTM-ANN equalizer is primarily based on
time memory and information extraction characteristics, which can compensate for the remaining
nonlinear redundancy. A low-complexity 50 Gbps E2E-optimized nonlinear 32 QAM signal
is successfully transmitted over a span of 20 km standard single-mode fiber (SSMF) and 6 m
wireless link at 92.5 GHz. The extended experimental results indicate that the proposed E2E
system can achieve a reduction of up to 78% in BER and a gain in receiver sensitivity of over
0.7 dB at BER of 3.8× 10−3. Moreover, computational complexity is reduced by more than 10
times compared to the classical training model.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

With the rapid expansion of wireless devices and bandwidth-intensive services, such as online
meetings, online courses, and telemedicine, the fiber-wireless integrated system presents a
promising solution to address the exponential increase in mobile broadband data [1,2]. By
combining the advantages of fiber and wireless communication, it can provide both wide
bandwidth and high mobility, which are essential for beyond 5 G (B5G) or even 6 G network.
Millimeter wave (mmWave) (30∼300 GHz) is known for large available bandwidth, making it
a promising solution for high-capacity transmission [3–5]. Moreover, W-band (75∼110 GHz)
fiber-wireless convergence technique exhibits great potential for future long-distance and high-
capacity transmission networks, owing to its wide bandwidth, directional transmission, and low
transmission loss. Several reported achievements suggest that mmWave transmission systems
have significant potential for all-weather communication applications [6–10].

The fiber-mmWave system faces various linear and nonlinear damage challenges when using
high-order modulation formats. Currently, coherent detection for high-order quadrature amplitude
modulation (QAM) signals can provide high receiver sensitivity and obtain linear impairment
compensations in the digital domain [11–14]. Due to the complexity of hybrid channels and
optoelectronic devices, high-speed transmission systems are facing challenges with the nonlinear
distortion. Imperfect optoelectronic devices, such as multistage amplifiers, mixers, photodetectors

#493470 https://doi.org/10.1364/OE.493470
Journal © 2023 Received 18 Apr 2023; revised 15 May 2023; accepted 18 May 2023; published 30 May 2023

https://orcid.org/0000-0002-6947-6002
https://orcid.org/0000-0003-4359-1552
https://orcid.org/0000-0001-8340-8666
https://orcid.org/0000-0002-2883-9655
https://doi.org/10.1364/OA_License_v2#VOR-OA
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.493470&amp;domain=pdf&amp;date_stamp=2023-05-30


Research Article Vol. 31, No. 12 / 5 Jun 2023 / Optics Express 20006

(PD), and optical-to-electrical (O/E) and electrical-to-optical (E/O) conversion components, as
well as complex environmental factors, such as attenuation, occlusion, and perturbation [15,16],
are the main causes of nonlinear distortions, as shown in Fig. 1. In particular, the nonlinear
response of the fiber-mmWave integrated system causes the symbols with higher power to
experience more nonlinear impairments than those with lower power. As a result, high-order
symbols located in the outer region are more vulnerable to nonlinear impairments than those
located in the inner region. Nonlinear impairment is inevitable due to nonlinear distortion
affecting the shape of high-order M-QAM constellations, resulting in a severe deterioration of
the achievable information rates (AIRs) and transmission distances. Therefore, constellation
shaping can be introduced to mitigate the nonlinearity of the system. Furthermore, as the
transmission rate increases, the nonlinearity becomes more pronounced, necessitating the use of
more taps in the equalizer design. The computation complexity also increases with the number
of taps. Therefore, a well-modeled equalizer with lower complexity can effectively compensate
for the nonlinearities, significantly improving system performances, such as long-distance and
high-capacity transmission.
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Fig. 1. The primary nonlinear distortions in a fiber-wireless integrated system.

In order to effectively mitigate nonlinearities, several nonlinear equalization approaches
have been extensively studied, such as the Volterra equalizer [17], MLSE [18], and Kernel
[19]. However, it is still uncertain whether individually optimized blocks can lead to the
global optimization of the fiber-wireless integrated system due to the nonlinear optoelectronic
devices and hybrid nonlinear channels. To guarantee optimal performance, [20] recommends
optimizing the entire system as an end-to-end (E2E) solution rather than individual modules
to coordinate the optimization between the transmitter and receiver. The E2E structure can be
seen as autoencoder (AE) neural networks, and the gradient back-propagation (BP) algorithm
helps jointly optimize hyperparameter and networks, which are extended to mitigate nonlinear
impairment [21–23], residual phase noise [24,25], or optimize geometric constellation shaping
(GCS) [26–31]. Combining constellation shaping and nonlinear equalizer has been shown to
enhance system performance and resist nonlinearity. The AE training structure, along with an
intelligent nonlinear equalizer, can further improve system performance. An intelligent end-to-end
nonlinear constellation auto-optimization method has been applied to the fiber-wireless integrated
network [32]. The nonlinear constellation with bit-level encoding is optimized by simulating
nonlinear effects, which can compensate for the nonlinear impairments in the transmission system.
However, the selected nonlinear model is suboptimal for simulating the practical nonlinearity
caused by hybrid channels and optoelectronic devices. Additionally, the non-ideal matching
between E2E-optimized nonlinear constellations and natural experimental environment results
in the accumulation of nonlinearity. Furthermore, due to the constellation shaping and the
time-varying system, traditional equalization algorithms cannot effectively compensate for the
remaining nonlinearities. Moreover, the computational complexity is also a vital factor in
influencing overall performance. Therefore, modeling an efficient framework and a robust
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equalizer to mitigate the nonlinear impairments of the fiber-wireless convergence system remains
a challenge.

This work is an extension and promotion of our OFC paper [30], where we experimentally
demonstrated a novel nonlinear constellation auto-optimization method using an autoencoder
and a fully-connected artificial neural network (ANN) equalizer at 92.5 GHz. The key novel
contributions of this work can be summarized as follows. 1) We establish a low-complexity system
to optimize the stacked autoencoder (SAE) framework with the help of principal component
analysis (PCA), referred to as PCA-SAE model. This model is designed to learn the nonlinear
constellations and reduce the computing complexity. 2) We propose a time-memory equalizer
based on a bidirectional long-short-term memory coupled with ANN (BiLSTM-ANN) to resist
the time-varying interference and effectively extract nonlinear features. In particular, we evaluate
the superiority of the proposed equalizer in terms of training sequence sizes, hidden layers,
neuron numbers, as well as training epochs, compared with the 2D-ANN equalizer in [30]. 3)
We define the reliability metrics of the training model and present more complete principle and
experimental detail. In the fiber-mmWave integrated system, the low-complexity PCA-SAE is
considered as a training model, which has not yet been considered by most existing works. 4)
We further compare the nonlinearity mitigations and complexity under different training models
and nonlinear equalization methods, including tradition algorithms and AE-ANN algorithms
[30]. The results demonstrate that the proposed E2E system with the PCA-SAE training model
and BiLSTM-ANN equalizer can effectively mitigate nonlinearity and reduce the computing
complexity, outperforming other schemes under different nonlinear strengths.

2. Implementing an end-to-end learning for fiber-wireless system

In an actual fiber-wireless integrated system, it is possible to demonstrate the presence of
nonlinear distortions by mapping the amplitudes of the transmitted (Tx) and received (Rx)
symbols. Figure 2(a) displays the conventional 32QAM data transmitted through the fiber and
wireless channels, symbols with higher power experience more nonlinearities. The response
of the output normalized amplitude exhibits non-linear behavior when the normalized input
amplitude exceeds a specific value. Due to the nonlinearity, the data deviates from the linear
straight line. From the perspective of the reference constellation (yellow marks), the received
symbols (blue dots) are affected by the nonlinear distortion, resulting in a squeezing in the
outer part an expansion in the center area, as shown in Fig. 2(b). The majority of the incorrect
symbols (represented by red dots) following whether decision symbol is equal to the original
symbol are concentrated in the outer region, suggesting that the conventional algorithms have
limited demodulation capabilities for outer symbols with the strong nonlinearity. By leveraging
the benefits of the constellation shaping and advanced equalization algorithms, a well-designed
architecture can effectively address nonlinear issues and has been successfully implemented in
fiber-wireless transmission systems.

2.1. Low-complexity autoencoder architecture for high-order GCS

An autoencoder is a type of deep learning architecture that attempts to recover its input at
the output in an unsupervised manner, as illustrated in Fig. 3. This architecture comprises of
two sub-networks: an encoding network ck =NNe (x,we), which maps an input vector x ∈ X
with v-dimensional to a k-dimensional (k<v) intermediate vector c consisting of m = log2(M)

measurements, and a decoding network xˆ=NNd (y,wd), which attempts to recover x from the
received symbols y. The neural networks are trained with the parameterized weights we and wd,
respectively. The MATLAB code is used to optimize the nonlinear constellation ck, and the
encoding network optimizes the nonlinear constellations ck (k = 2) for GCS, while the decoding
ANN learns the decision boundaries of the distorted signal y. The goal is to find optimal weight
set {we, wd}, that minimizes the categorical cross-entropy or mean square error (MSE), i.e.,
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Fig. 2. Nonlinear impairments observed in an actual fiber-wireless integrated system. (a)
Amplitude response, and (b) Received symbols equalized by the tradition algorithms.

bit-wise cross-entropy with bit-level optimization. For high-order M-QAM signal, N runs of the
AE model are performed, as shown in Fig. 3(b). CM ×N is defined as the constellation set after N
iterations, I and Q represent the real and imaginary parts of the complex symbol, respectively.
Once the training model has converged, the encoder and decoder are fixed, and the testing
is performed. The nonlinear constellations and hyper-parameters with the best accuracy are
then stored and sent to the experimental fiber-wireless integrated system, and a novel nonlinear
equalizer is implemented by Python to help the system bring extra resistance of nonlinearity, and
is more robust.
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Fig. 3. A classical autoencoder architecture in a fiber-wireless system. (a) Diagram of the
applied autoencoder. (b) Feeding the M-AE constellations to the system.

To achieve high input space compression for high-order modulation formats, i.e., k ≪ v, a
more complex AE called a stacked autoencoder (SAE) is designed by adding further hidden layers
[33,34]. However, increasing the number of layers poses challenges in training the model N ,
such as vanishing gradient problem, computational complexity and overfitting. To address these
challenges, a sparse autoencoder framework having L layers is used. The basic cost function,
including regularization and sparsity terms, is defined as

J(X; θ) =
1

mv
∥X − N(X; θ)∥2

F +
λ

2

L−1∑︂
l=1

∥Wl∥
2
F + γ

k∑︂
i=1

KL(ρ∥ ρ̂i) (1)
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where ∥ · ∥F depicts the Frobenius norm, θ represents weight matrices and corresponding bias
matrices, γ and λ represent the weightings that are applied to the sparsity and weight decay terms.
The sparsity penalty KL(·) is defined as the Kullback-Leibler (KL) divergence. The mean value
of the random variable ρ̂i is calculated as the average of the output of the i-th neuron in the
bottleneck layer, which is then averaged over the training sequences. The target value for this
parameter is represented by ρ.

For further reduce the computational complexity for high-order modulation, we introduce
a low-complexity framework [34], as shown in Fig. 4. The PCA-SAE is a methodology that
addresses the problem of dimensionality reduction by utilizing PCA and a SAE. PCA is used to
reduce the dimension of the input space, and then apply SAE to learn a compressed, distributed
representation of the data. The input dimension is reduced from v to k, where k represents the
number of components required to achieve the desired reconstruction accuracy τ. The encoding
matrix Pk, which maximizes the reliability explained, is given by the first k principal component
of the PCA of X. The output of the linear neuron is denoted as Ck = X ·Pk. The nonlinear encoder
block further reduces the dimension to k, and the neural network model N∗ is trained to obtain
its parameters by minimizing

JSAE(Cklin ; θ) = ∥Cklin − N∗(Cklin ; θ)∥
2
F (2)

It should be noted that when performing GCS, the value of k must be set to 2. The matrix Cklin

represents the reduced dimensionality dataset, and the output of the nonlinear neurons is denoted
as Ĉklin = N∗(Cklin ; θ∗). The decoding transformation is represented by X̂ = Ĉklin β, and the linear
decoding matrix is β = Ĉ+klin

X, C+klin
is its pseudo-inverse. The SAE is trained in two phases: a

sparse AE based greedy layer-wise pre-training is performed via (1), and then the fully-connected
network is fine-tuned via (2) with early stopping.

Fig. 4. The Neural network architecture interpretation of the PCA-SAE training model.

2.2. Nonlinear compensation by the BiLSTM-ANN equalizer

Although E2E-optimized nonlinear constellations can mitigate nonlinearity for fiber-wireless
transmission system, the nonlinear redundancy caused by suboptimal system parameters and
the device disturbance cannot be ignored. In addition, due to the time-varying channel, typical
ANN equalizers are not reliable for channel information tracking. In order to further enhance
nonlinear resistance, we introduce a novel BiLSTM-ANN equalizer with the complex-valued
architecture for information extraction and recovery, as shown in Fig. 5. The equalizer helps the
E2E-optimized system bring extra resistant of nonlinearity, and is more robust.

Figure 5 illustrates the proposed architecture for behavioral modeling, which comprises six
layers: an input layer, a Bi-LSTM layer, two batch normalization layers, and three fully connected
ANN layers. The received symbol yi...N is transformed into two-dimensional (2D) real vectors



Research Article Vol. 31, No. 12 / 5 Jun 2023 / Optics Express 20010

Input layer

Sequence.m
SequenceInput...

R
ec

ei
v
ed

 S
y
m

b
o
ls

as
 i
n
p
u
t

Bi
-L
ST
M

B
i-

L
S

T
M

L
ay

er

B
at

ch
 N

o
rm

al
iz

at
io

n

Fc F
u
ll

y
C

o
n
n
ec

te
d
..
.

�

Fc F
u
ll

y
C

o
n
n
ec

te
d
..
.

�

Le
ak
yr
el
u

L
ea

k
y
R

el
u
U

n
it

Le
ak
yr
el
u

L
ea

k
y
R

el
u
U

n
it

Fc F
u
ll

y
C

o
n
n
ec

te
d
..
.

�W-tap

Softmax
Softmax

Output Layer

Equalization.m
EqualOutput...

yer

2D

B
at

ch
 N

o
rm

al
iz

at
io

n
Classoutput
Classification

ˆ Iiy

ˆQiy

I
iy

Q
iy

I
iy Q

iy

Fig. 5. The flowchart of our proposed BiLSTM-ANN equalization.

yI
i...N and yQ

i...N . The normalization serves as the first layer of the Bi-LSTM neuron network,
initializing and normalizing the input I/Q elements. Subsequently, the two tributary data sets
pass through the Bi-LSTM layer, which includes both forward and backward layers. The LSTM
network is designed and trained based on the input sequence’s characteristics, and the network
operates in a sequence mode, resulting in predicted output of the same size as the input sequence,
and W is the weights and bias in a BiLSTM. The regression computation can be represented by

MSE =
1
N

N∑︂
i=1

[(I(y(i)) − I(ŷ(i)))2 + (Q(y(i)) − Q(ŷ(i)))2] (3)

where I and Q denote the real and imaginary components of a complex signal, respectively.
The Bi-LSTM network is used to make a precise decision on the BER. It is driven to fully

connected layers and then to a SoftMax function that classifies symbols at the output and provides
the probability of each category. The output of the hidden layers of the BiLSTM at each step
can be considered as the extracted nonlinear features. We can use these features as input to
another machine learning model, or use the output of the BiLSTM directly for prediction. The
nonlinear impairments information in the input feature can greatly improve the accuracy of
predicting these impairments. We have also investigated the impact of the number of neurons in
the first fully connected layer and found that adding a new fully connected layer can be beneficial
when further increasing the number of neurons in the first layer does not provide any additional
benefits. Additionally, we have varied the hyperparameters to analyze their impact on the system
performance. Finally, the weight values of the Bi-LSTM three gates are updated using the BP
training algorithm until the target threshold or epochs is reached, which is similar to traditional
ANN equalizers.

2.3. Complexity analysis of the autoencoder architecture

We conducted a complexity comparison between the proposed PCA-SAE architecture and
the baseline SAE. Both PCA-SAE and SAE can be viewed as networks that have multiple
sub-neural models trained independently. PCA-SAE algorithm is used to train network N∗ with
dimensions [klin . . . , hi(= k), . . . klin], whereas SAE train the neural network N with dimensions
[v . . . , hi, . . . , v]. By using klin ≪ v components for ultra-high order signals, the reconstruction
accuracy τ can be achieved, and PCA-SAE further reduces the dimension to k. However, as
the value of k increases, the difference in reliability explained between algorithms decreases,
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and computational complexity increases [34]. To evaluate the validity of selecting k values,
especially for the lower values of GCS (k = 2), we calculate the reliability explained VEX between
the original sequence X and the reconstructed sequence X̂, defined as

VEX(X; X̂) = 100(1 − ∥X − X̂∥2
F
/︁
∥X∥2

F) (4)

maximizing VEX is equivalent to minimizing MSE.
We compare the effectiveness of the two methodologies while ensuring that they have an equal

number of parameters and layers θPCA−SAE = θSAE, as stated in the following:

θPCA−SAE = k · klin + k + klin · k + klin = 2k · klin + k + klin (5)

θSAE = h · k + h + k · h + k = k · 2h + h + k (6)

Equation (5) provides the definition of the parameter count for a single-hidden layer in the
PCA-SAE framework, while Eq. (6) presents the corresponding expression for an SAE with h
hidden neurons.

3. Experimental setup

Figure 6 illustrates the experimental configuration of our demonstrated W-band 32QAM trans-
mission over a 20 km SSMF and 6 m wireless link, embedded with the SAE-optimized nonlinear
constellations and BiLSTM-ANN equalizer. A personal computer (PC) serves as the interface
between the transmitter and receiver, collecting training sequences in real-time to enable the
integration of the end-to-end data transmission system.
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The transmitter side employs two free-running tunable external cavity lasers (ECL-1 and
ECL-2) with a 100 kHz linewidth to generate W-band mmWave signals in a simple, flexible, and
cost-effective architecture. The data rate is 50 Gbit/s with a roll-off factor of 0.5. The training
data is encoded and mapped by the PCA-SAE encoding module (k= 2), and the baseband 32QAM
symbol is converted from digital to analog (DAC) by the arbitrary wave generator (AWG) with
a sampling rate of 92 Gsa/s. The boosted 32QAM signal is amplified by a 40 GHz cascaded
electrical amplifier (EA) and used to drive the 35 GHz I/Q modulator. The signal light source
is ECL-1 at 1549.65 nm with a linewidth of 100 kHz and an average power of 16 dBm, which
is modulated via the I/Q modulator. The MZM has a 3 dB optical bandwidth of 30 GHz, a
half-wave voltage of 2.7 V at 1 GHz, and a 5 dB insertion loss. ECL-2 at the center wavelength
of 1550.4 nm functions as a local oscillator (LO), which has a frequency space of 92.5 GHz with
the modulated ECL-1 lightwave, as shown in Fig. 6(a). An erbium-doped fiber amplifier (EDFA)
compensates for the fiber transmission loss. Two polarization controllers (PCs) are necessary to
adjust the incident direction to maximize output power since the W-band photodiode (PD) is
polarization sensitive. The optical signal and ECL-2 are combined by an optical coupler (OC),
and the coupled light beam can be delivered over 20 km SSMF. A variable optical attenuator
(VOA) adjusts the received optical power (ROP) into the PD to control the nonlinear strengths.
The PD used in our experiment is implemented within the frequency range of 10∼170 GHz at
-2 V DC bias, and the output power range of 0∼10 V.

At the wireless transmitter, as shown in Fig. 6(c), the 92.5 GHz signal is generated and emitted
from the W-band antenna (HA) with a gain of 26 dBi. A paired W-band HA is used to receive the
W-band signals, and the signal power is amplified by a cascaded electrical low-noise amplifier
(LNA) to achieve superior input power into the HA. At the wireless receiver, the received
signal at 92.5 GHz is first down-converted into an intermediate frequency (IF) signal using a
commercial W-band mixer and a LO source. The IF signal is then amplified using an EA with
33 dB gain and 14 dBm saturation output power available from DC to 50 GHz frequency band.
Finally, the amplified signal is captured by a 128 Gsa/s digital storage oscilloscope (OSC) with
59 GHz bandwidth and 10-bit resolution for processing. The captured signal is down-converted
and resampled to two samples per symbol, followed by squaring time recovery and a 53-tap
T/2-spaced cascaded multi-modulus algorithm (CMMA). The frequency offset estimation (FOE)
step removes the residual frequency offset of the received signal resulting from frequency drifts
of the lasers. A flexible and robust algorithm for phase noise estimation is employed, consisting
of a carrier phase estimation (CPE) stage and a blind phase search (BPS) stage. A 37-tap
decision-directed least-mean-square (DD-LMS) equalizer is added to compensate for remaining
linear damages and I/Q imbalance before the BiLSTM-ANN equalization. After the conventional
optimization process, the BiLSTM-ANN equalizer is used to help the E2E-optimized system
resist remaining nonlinear redundancy. Finally, the BER performance can be calculated based on
the recovered signal. Figure 6(b) illustrates one E2E-optimized nonlinear constellations with
bit-level encoding in the actual fiber-wireless system, which is robust to the nonlinear system.

4. Experimental results and discussions

In this section, we present the nonlinear performances of the E2E-based system using auto-
optimization GCS and the 2D BiLSTM-ANN equalizer. The training and testing models are
implemented in Pytorch and Matlab. Based on the experiment system for E2E-optimized 32QAM
fiber-wireless transmission at W-band, we compare the performance of the proposed 2D-ANN
equalizer in [30] and the proposed BiLSTM-ANN equalizer in terms of the training size, neuron
number, and the training epoch. Next, we qualitatively evaluate the nonlinearity mitigation
in a fiber-wireless transmission system with the help of the nonlinear constellations and the
BiLSTM-ANN equalizer. Finally, we briefly analyze the computing complexity of the PCA-SAE
compared with the traditional SAE architecture.
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4.1. Comparison between BiLSTM-ANN and 2D-ANN equalization

Increasing the size of the training set in a network generally improves accuracy, but it also
presents a series of challenges, particularly a larger computational burden during the training
process. A shorter training length results in a lower precision, making the selection of the training
data scale a key influential factor in ANN networks. Figure 7(a) displays the BER performance of
testing data as the training data size changes when the input power into PD is fixed at 5 dBm. The
results indicate that the precision of the equalizers is dependent on the initial training sets, and
BER decreases effectively with an increasing training block length. When approximately 10,000
samples are used as the training data, BER can be achieved as low as 3.8× 10−3. Furthermore,
the BiLSTM-ANN equalizer greatly reduces the training size, demonstrating its good training
accuracy and satisfactory tracking speed. Considering the accuracy, complexity, and time
consuming, we train networks using 12,000 training samples in the further discussion.

Fig. 7. (a) BER performance of the testing data versus the training data size in the 2D-ANN
equalizer [30] and the BiLSTM-ANN equalizer, respectively. (b) BER versus the Vpp. (c)
BER versus the Rop.

Furthermore, increasing the number of hidden layers in ANN also effectively improves accuracy.
Figure 7(b) and Fig. 7(c) illustrate the BER of 50 Gbps 32QAM signals versus ROP and Vpp
values, with the neuron numbers of input and output fixed at 2. The discussion is divided
into four cases: (1) ANN has a hidden layer with 60 neurons in a 2-60-2 configuration. (2)
ANN has two hidden layers, each with 60 neurons, in a 2-60-60-2 configuration. (3) ANN has
three hidden layers, each with 60 neurons, in a 2-60-60-60-2 configuration. (4) BiLSTM-ANN
structure has only one hidden layer, in a 32-50-32 configuration. During the analysis of the
four cases, the training size was set to 12,000. The results indicate that the 2D-ANN with three
hidden layers outperforms the other two cases in terms of BER performance. However, when the
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BiLSTM-ANN equalization method is applied in case 4, there is a significant improvement in
BER, with up to 60% improvement and 0.25 dB nonlinear gains at a BER of 3.8× 10−3, compared
to the 2D-ANN equalizer.

4.2. Nonlinear constellation resist nonlinear impairments

To evaluate the nonlinear system, the peak-to-peak voltage (Vpp) value of the output signals
from the AWG is adjusted from 0.075 V to 0.30 V, while the received power of the PD is set to 5
dBm, in order to present different strengths of nonlinear effect. Figure 8 provides a qualitative
assessment of the nonlinear system in a fiber-wireless convergence configuration, showing the
experimentally-received constellations at three nonlinear strengths (low, middle, and high). It also
visually compares the BER performance of the nonlinear constellations to the grid constellation,
with blue dots and red marks representing the correct and incorrect symbols after equalization.
Figure 8(a)-(c) demonstrates that the shape of the grid constellation is affected by the nonlinearity
as the nonlinear strength increases, resulting in an expansion in the center part and a squeezing in
the outer area. On the other hand, Fig. 8(d)-(f) shows that the nonlinear constellations are clearly
distinguishable, with significantly reduced incorrect symbols, and are resistant to the nonlinearity
in the fiber-wireless integrated system.

Fig. 8. Experimentally received constellations for 32QAM and AE-optimized 32QAM: (a),
(d) low nonlinear strength; (b), (e) middle nonlinear strength; (c), (f) high nonlinear strength.

In Fig. 9(a), the average BER curves for different schemes are presented versus training epoch.
The E2E-optimized nonlinear constellations with BiLSTM-ANN equalizer exhibit the best BER
performance and optimal convergence speed. Although the AE-32QAM scheme with a 2D-ANN
equalizer can achieve BER performance under 3.8× 10−3, the BiLSTM-ANN equalizer can
further improve system performance. Additionally, the nonlinear performance is evaluated at
different nonlinear strengths. Figure 9(b) shows the transmission performances at various Vpp
values. As Vpp increases, the nonlinearity of the seamless fiber-wireless system gradually
increases.

In the first region, where the Vpp value ranges from 0.075 V to 0.125 V, nonlinearity is weak,
and the larger distance between the nonlinear constellations enable better performance under
the same conditions. In the second Vpp region, ranging from 0.125 V to 0.175 V, the nonlinear
strength is middle, and the nonlinearity effect starts to impact the shape of the 32QAM, resulting
in an expansion in the center part and a squeezing in the outer area. With increasing Vpp, a
more severe nonlinearity is introduced by the amplifiers. In the third region, ranging from
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Fig. 9. (a) The iteration BER with different schemes. (b) The BER performance of the
constellations with different Vpp when ROP is 5 dBm. (c) The BER of the constellations
with different ROP when Vpp is 0.1 V.

0.175 V to 0.30 V, the BER performance is seriously affected by the nonlinearity. However, the
point in the received constellation can be clearly distinguished. The nonlinear 32QAM with
the BiLSTM-ANN equalizer achieves a 78% lower BER when Vpp is 0.25 V. The curves of the
2D-ANN equalizer and the 2D BiLSTM-ANN equalizer are further compared. Although the
nonlinear constellations obtain similar improvement under low nonlinear strength, the resistance
to nonlinearity can be further enhanced under high nonlinear strength, making it robust to the
fiber-wireless system. Figure 9(c) shows the BER performance when Vpp is 0.1 V, varying the
ROP. By using the AE-32QAM with 2D-ANN equalizer, a receiver sensitivity gain exceeding
0.7 dB is achieved over that of the method with no E2E optimization. Furthermore, it shows that
the E2E system has stronger nonlinear resistance and can achieve better performance by taking
advantage of the bit-level mapping and the BiLSTM-ANN equalizer.

To illustrate the mitigation of nonlinearity in the received signals, Fig. 10(i)-(iii) display the input
and output normalized amplitude diagrams of the nonlinear constellations after implementing
the 2D BiLSTM-ANN equalizer. The black points indicate the mean of the output versus input
amplitude, while the red line represents the linear reference. The equalizer effectively mitigates
nonlinear impairments, even under strong nonlinear strengths.

4.3. Complexity analysis

To evaluate the effectiveness of the proposed autoencoder layout, we compared the training
models of three autoencoder architectures. As the value of k increases, the training models
become more efficient, but this comes at the cost of greater complexity and longer training
times. Figure 11(a) analyzes the reliability index VEX between the original sequences X and the
reconstruction sequences X̂. The results indicate that SAE has a similar accuracy to PCA-SAE,
but the AE architecture in [30] performs worse. In this work, it also shows that the auto-optimized
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Fig. 10. The optimized nonlinearities at different nonlinear strength.

nonlinear constellations based on the PCA-SAE architecture is reliable for GCS (k = 2), and the
reliability index VEX is close to the saturation value and reaches 93. The illustration depicts the
E2E-optimized nonlinear constellations.
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Fig. 11. (a) The VEX as a function of k. (b) Number of required epochs to train in PCA-SAE
and SAE. (c) The mean computation times for the first epochs.

To investigate the reason for the shorter training time of the PCA-SAE compared to SAE,
despite both neural networks satisfying θPCA−SAE = θASE (τ = 99.5, klin = 7 and h = 7), we
analyzed the required number of epochs to train networks N and N∗ in each simulation, as
well as the mean computational time over the initial epoch. The analysis results are presented
in Fig. 11(b) and (c), respectively. Figure 11(b) illustrates that PCA-SAE requires an average
of 12 to 55 epochs to train, seldom exceeding 100, while SAE typically necessitates up to 500
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epochs. The E2E transmission system can reduce the computing complexity by more than 10
times compared to the classical SAE training model, and the PCA-SAE requires less training
time during each epoch. These results suggest that PCA-SAE framework is inherently better
conditioned, leading to easier-to-solve training problems than the standard SAE architecture.

5. Conclusion

In this paper, we demonstrate an E2E-optimized system with a low-complexity PCA-SAE training
model and a novel equalizer for a 50 Gbps 32QAM signal transmission over a 20 km SSMF and
a 6 m wireless link at 92.5 GHz. The E2E-optimized system can learn nonlinear constellations
with bit-level mapping and has been verified to have a strong resistance to the nonlinearity.
Furthermore, we propose a 2D BiLSTM-ANN nonlinear equalizer to mitigate nonlinearities
caused by the time-varying channel and device disturbance. In particular, we evaluate the
superiority of the BiLSTM-ANN nonlinear equalizer compared to the 2D-ANN equalizer in
terms of training sizes, training epoch, and neuron number. The fiber-wireless system benefits
from the nonlinear constellations and the BiLSTM-ANN equalizer, resulting in strong nonlinear
resistance and better BER performance. Compared to the classical system, the E2E system
achieves a BER performance up to 70% decrement and a 0.7 dB receiver sensitivity improvement
under the BER of 3.8× 10−3. Additionally, the computational complexity of the training system
is significantly reduced. The E2E system proposed in this paper holds great potential for practical
fiber-wireless integrated link in future 5 G or even 6 G mobile communication system.
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