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Abstract—We propose a deep reinforcement learning-based 

policy for massive multiple input multiple output (MIMO) 

enabled beamforming in a front-haul network. The simulation 

results show the proposed algorithm can achieve better 

performance than heuristics. 
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I. INTRODUCTION

Massive multiple input multiple output (mMIMO) 
technology, using beamforming and multiplexing in spatial 
domain, can improve spectral efficiency, which is considered 
to be a promising technique for the next generation of 
wireless communications [1]. It allows multiple antennas to 
transmit the same data to serve a user to improve the signal 
strength and quality. However, beamforming may incur 
tremendous redundant data over front-haul in next generation 
radio access networks (NG-RANs), which poses a great 
challenge on network operators to make an optimal optical 
(e.g., wavelength) and radio resources (e.g., antenna and 
radio resource block (RB)) allocation [2].  

Conventional joint optical and radio resources 
optimization is based on integer linear programming (ILP) or 
heuristic algorithms, where the ILP is usually built upon the 
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mathematical principles of optical-wireless access 
networks. However, the required running time of the ILP 
algorithm prohibits real-time resource allocation in 
practical networks. In addition, heuristic algorithms are 
difficult to achieve optimal performance among optical 
and radio resources in NG-RANs. This is because 
heuristic-based algorithms that employ predefined 
procedures prone to stop searching for optimal algorithms 
once they get an available solution [3]. Recently, the joint 
optimization problem of optical and radio resources is 
expected to be enlightened by machine learning-based 
algorithms, especially deep reinforcement learning 
(DRL) [4]. Moreover, it has a self-learning ability and 
can make an optimal resource allocation for the current 
network environment. Thus, in this paper, we adopt the 
DRL policy for solving the optical and radio resources 
allocation issue. 

Very recently, the authors in [5] investigated the tradeoff 
between the front-haul bandwidth and radio RB 
utilization for mMIMO enabled beamforming in a time and 
wavelength division multiplexed and passive optical 
network (TWDM-PON). However, for the mapping of 
beam antenna array (BAA) request, the antenna is 
considered simply as a resource pool, and the specific 
physical structure of the antenna array is not considered 
from a realistic view. Thus, the antenna selection does 
not take into account the constraints of antenna array 
resource allocation, which is usually unreasonable. This 
motivates us to investigate the 
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antenna selection as a 2D space for the BAA mapping model 
in the mMIMO system.  

In this paper, we propose a DRL policy, and apply the 
DRL policy for the joint optimization problem of wavelength, 
2D antenna, and radio RB resource for mMIMO 
beamforming in a TWDM-PON based NG-RANs. The main 
contributions of this paper are listed as follows. 1) We 
propose a BAA mapping model and transform it into an 
evolved 3D bin-packing problem to solve the joint 
optimization problem between wavelength, 2D antenna and 
radio RB resource. 2) We design a DRL policy according to 
the different antenna selection policies for the 3D BAA 
mapping model to optimize front-haul bandwidth and the 
radio RB utilization. 3) The extensive simulation results 
demonstrate that the proposed DRL policy can effectively 
optimize the front-haul bandwidth and radio RB utilization. 

II. ARCHITECTURE AND MODEL DESCRIPTION

In this section, we will briefly describe the system model, 
the 3D BAA mapping model for beamforming and present 
some preliminaries regarding the proposed policy. 

A. TWDM-PON Based System Model

As shown in Fig. 1, we consider a TWDM-PON based
front-haul for mMIMO system. In the base station (BS), a 
large-scale antenna array can be divided into several sub-
antenna arrays (sub-AAs), and these sub-AAs are linked to 
the different remote radio unit (RRU), respectively. For a 
large-scale antenna array, these RRUs are associated with an 
optical network unit (ONU) via a time division multiplexed 
(TDM) switch. These RRUs are deployed near the ONU side. 
In the TWDM-PON based front-haul, an ONU can be 
assigned one or multiple wavelengths, and a wavelength can 
be shared among multiple ONUs. The ONUs are responsible 
to receive downstream signals using a specified optical 
wavelength resource and to transmit upstream signals from 
multiple antennas. The enhanced common public radio 
interface (eCPRI) signals are further processed in the 
distributed unit (DU) pool after passing through the front-
haul network. The DU pool is usually placed together with 
an optical line terminal (OLT), whose main function is to 
receive upstream data from the DU and send downstream 
data to one or multiple ONUs by broadcasting. 

Figure 1. A TWDM-PON based front-haul for mMIMO system. 

From a realistic view, a BAA request is mapped into a 
selected 2D antenna array in a large-scale antenna array. 
When the selected antenna array is just assigned within a 
sub-AA, which is connected to an RRU, it would not 
generate the signal duplication being transmitted over the 
front-haul. On the contrary, when the 2D antenna array for a 
BAA request may come from multiple RRUs, and since the 
RRUs are independent of each other, it is necessary for all 
RRUs involved in the BAA to transmit the BAA signal, 
resulting in redundant data transmission over the front-haul. 
In addition, considering the allocation of radio RB resources, 
adjacent BAAs could be allocated non-overlapped radio RBs 
on the time/frequency domains to reduce the interference 
between BAAs. In contrast, non-adjacent BAAs could use 
the same radio RBs to improve the radio RB utilization. 

B. Functional Split RAN Architecture for Beamforming

To decrease front-haul bandwidth and latency in the NG-
RAN, some radio signals processing functions of the low 
physical layer (Low-PHY) are transferred to the RRU site. 

For the functional spilted RAN architecture, the higher layer 
functions such as packet data convergence protocol (PDCP) 
and radio link control (RLC) are processed at the centralized 
unit (CU), and media access control (MAC) functions and 
forward error correction (FEC) encoding are processed at the 
DU. The CU is connected to DU through the F1 interface 
defined by 3GPP [6]. This paper focuses on the splitting 
point between the DU and the active antenna unit (AAU), 
and the front-haul bandwidth in the TWDM-PON can be 
calculated by [7] 

1/
DI TTI mcs sys sc rb mimoF T N N N N N       (1) 

where TTTI denotes a transmission time interval (TTI), Nmcs 
denotes the modulation and coding (MCS), Nsys denotes the 
number of orthogonal frequency division multiplexing 
(OFDM) symbols in a TTI, Nsc is the number of sub-carriers 
per RB, Nrb is the number of occupied RBs, and Nmimo is the 
number of MIMO streams. For each BAA request, Nmimo 
equals 1. 
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C. Joint Antenna Selection and Radio RB Allocation 

In this paper, we formulate a BAA mapping model to 
solve a joint optimization problem for the antenna selection 
and radio RB allocation, and transform it into an evolved 3D 
bin-packing problem. For each BAA request, as shown in 
Fig. 2, the 3D size of the bin is the size in X- and Y-axis of 
the selected 2D antenna array and the number of the 
allocated radio RB in Z-axis, respectively. To intuitively 
demonstrate the 3D BAA mapping for mMIMO enabled 
beamforming, an example is presented in Fig. 2. For 
simplicity and clarity, only two RRUs and three BAA 
requests are drawn. As shown in Fig. 2, the BAA1 request is 

denoted as (ax, ay, rb) = (3, 4, 4), where the ax, ay, rb and 
denote the value in X- and Y-axis of the 2D antennas array to 
be allocated for the BAA1 request and the required radio RBs 
in Z-axis, respectively. Similarly, the requests BAA2 and 
BAA3 are represented as (3, 4, 4) and (4, 3, 4), respectively. 
In Fig. 2, considering that the BAA2 and BAA3 have 
overlapping coverage, the two BAAs can use all or part of 
the same 2D antenna array, but should be allocated different 
radio RBs. It helps to improve the utilization of antenna 
resources. In addition, since the BAA1 and BBA2 requests 
have different coverage, the two requests should use the 
same radio RBs to enhance the radio RB utilization. 

 

Figure 2. An example of a 3D BAA mapping model in a TWDM-PON based front-haul. 

III. DESCRIPTION OF DRL-BASED POLICY 

Joint antenna selection and radio RB allocation problems 
are commonly optimized by the heuristic algorithms [2], [5]. 
However, they are difficult to achieve optimal performance 
among wavelength, 2D antenna and radio RB resources in 
NG-RANs. Therefore, we propose a DRL-based policy to 
optimize the front-haul bandwidth and radio RB utilization. 
The structure of DRL-based policy is shown in Fig. 3. At 
each decision moment, the agent acquires a state from the 
environment. The deep neural network (DNN) maps the state 
inputs and the fixed requirement of BAA requests into 
multiple Q-values. Each Q-value is related to an action 
respectively. Then the action with maximum Q-value is 
taken. Finally, a reward is obtained from the environment 
after the action is performed. The detailed training process of 
our proposed DRL policy is shown in algorithm 1. In lines 1-
2, we first sort the BAA requests in set M in a descending 
order of the total number of requested RBs (axm × aym × rbm), 
where axm and aym denote the number of selected 2D antenna 
array for BAA m  in X- and Y-axis, respectively, and rbm 

denotes the number of radio RBs for the BAA m in Z-axis, 
and serve the BAA requests one by one from the top. Then, 
we find an available radio RB set {RB-RBK} that could be 
allocated to BAA m without causing interference with other 
BAAs (lines 3-5).  

Algorithm 1: Procedures of DRL training 

1.  for each episode do 

2.    Sort m∈M in a descending order of the total number of requested 

RBs (axm × aym × rbm). 

3.      for t =1,T do 

4.         for m∈M  do 

5.          Find a subset K in M’, where K’s coverage overlaps with BAA 

m, M’ denotes allocated BAA set. RBK is a radio RB set allocated to K. 
{RB-RBK} is the available radio RB set for BAA m. And observe state 

st. 

6.           Simple c~Uniform(0,1)  

7.            if c >  , then 

8.                Select an action at∈arg max(st,a)  

9.            else 

10.              Select an action at∈A at random 

11.          end if 
12.          Execute action at, observe reward rt and next states st+1. 
13.          Store transition (st ,at, rt, st+1) in D 

14.       Minibatch sample from D for experience (st ,at, rt, st+1), update 

DNN with the loss function. 

15.        end for   end for   end for 

16. Compute the front-haul bandwidth and radio RB utilization for all 

RRU. 

 

 

Figure 3. Structure of the proposed DRL-based policy. 

State: In line 5, the agent obtains the current state. For 
each BAA m, the DRL generates four policies based on the 
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different antenna selection policies. The first policy allows 
the BAA m to be allocated to different RRUs and finds the 
lowest available antenna in X-axis. The second policy allows 
the BAA m to be allocated to different RRUs and finds the 
lowest available antenna in Y-axis. The third policy is to find 
the available antenna with smallest antennas index among all 
antennas. The forth policy does not allow the BAA m to be 
allocated to different RRUs and finds the lowest available 
antenna in X-axis. The final policy does not allow the BAA 
m to be allocated to different RRUs and finds the lowest 
available antenna in Y-axis. In our model, antennas and radio 
RBs allocated to a BAA m have to be continuous, which 
means the above four policies can be represented by their 
least allocated RB index and least allocated antenna index, as 

{(xi, yi, zi)|i∈[1,5]}. In addition, to further evaluate every policy, 

we calculate the number of used sub-AA number and used 

antenna number by these policies as {(n
sub 

i , n
a 

i )|i∈[1,5]}. As a 

result, for a given BAA m (axm, aym, rbm), the state 
representation is defined as follows: 

[1,5]{( , , , , ) | , , , }sub a

t i i i i i i m m ms x y z n n ax ay rb     (2) 

Action: In lines 6-11, the agent selects an action with   

strategy. In each step, the proposed DRL fetches a BAA in M 
until M is empty. For each BAA m, the agent observes the 
state according to (2) and chooses an allocation policy from 
the five policies as mentioned described above. 

Reward: The average cost is presented as follows: 

   ( , )( , )

m

m q i jm M q Q i j N
AC fh Y V 

  
          (3) 

where fhm means front-haul bandwidth required by BAA m, 
Y

m 

q and V(i,j) denote whether BAA m occupies sub-AA q and 
whether antenna (i, j) is occupied, respectively. The average 
cost has two parts: the first part is to minimize the front-haul 
bandwidth, and the second part is to maximize the radio RB 
utilization which is then transformed to minimize the number 
of occupied antennas. The two parts are linearly summed up 
by multiplying the weighting factors α and β. In line 12, the 
agent obtains the reward. For any BAA m, the average cost is 
calculated twice before and after scheduling BAA m as ACm 
and ACm+1, respectively. Hence, the reward can be produced 
as rt = ACm - ACm+1, which reflects the negative average cost 
consumed by this BAA m. The more resources the BAA m 
uses, the large penalty the DRL agent will receive.  

Training: In this work, we implement double deep Q 
network (DDQN) as our DRL algorithm. All inputs are 
discrete variables so we transform them into one-hot code to 
converge better. In lines 13-15, we record data (st, at, rt, st+1) 
in the memory D. To train the DRL model, the parameters of 

DNN is updated by loss = E{[rt +γmaxQ(st+1 , at+1) - Q(st , 

at)]2}, where  rt +γmaxQ(st+1, at+1) is the optimal Q-value, 

Q(st , at) denotes the Q-value before update [7]. 

IV. PERFORMANCE EVALUATION 

In this section, extensive simulations are performed to 
evaluate the proposed DRL policy. In our simulation, for the 
simulation setup of the wireless part, we consider that each 
wireless RB has a frequency range of 180 kHz, 12 

subcarriers and 7 OFDM symbols are transmitted on each 
TTI with MCS of 7, i.e., Nsc = 12, Nsys = 7, Nmcs = 7. For the 
sake of simplicity, this paper considers only the situation of a 
single BS with one large-scale antenna array. In a large-scale 
network, we have 16 × 16 antenna divided into  4 × 4 sub-
AAs and each sub-AA includes  4 × 4 antennas, each 
antenna has 1000 radio RB, For each BAA, the antenna 

requests are {(ax × ay)|ax∈[2, 4], ay∈[2, 4]} and the RB 

request of each BAA is random in [10, 50]. In addition, each 
BAA has two characteristics: angle and direction. The BAA 
requests with antenna request numbers [1-4]/[5-8]/[9-
12]/[13-16] have a beam coverage of 20°/15°/10°/5°, 
respectively. In the simulation, the minimum beam angle is 
5˚. To accurately calculate the extent of overlap between 
BAAs, we consider an omnidirectional antenna system 
providing 360° radiation in the horizontal direction, and the 
coverage of the antenna array can be divided into 360 small 
regions with an interval of 1°.  

Algorithm 2: Inter-Subarray BAA Mapping Algorithm (Inter-SA) 

1. for m∈M  do 

2.   Find a subset Ac in A’, in which every antenna has a same 

consecutive RB set that satisfies RBAC∈{RB-RBK}, |RBAC| ≥ rbm, where A’ 

denotes allocated antenna set, then 
4.    if | Acx | ≥ axm, | Acy | ≥ aym, then 

5.       Select a subset Am in Ac, allocate rbm consecutive RBs (i.e., RBAM) 

from the available RB in Am. 
6.    elif | Acx | ≥ axm, | Acy | < aym, then 

7.        Allocate rbm consecutive RBs (i.e., RBAc) from the lowest 

available RB in Ac. Allocate an empty RRU in the Y-axis in all RRU, 
select an antenna set A’c, allocate rbm consecutive RBs in A’c as same as 

RBAc. 

8.    elif | Acx | < axm, | Acy | ≥ aym, then 

9.        Allocate rbm consecutive RBs (i.e., RBAc) from the lowest 

available RB in Ac. Allocate an empty RRU in the X-axis in all RRU, 

select an antenna set A’c, allocate rbm consecutive RBs in A’c as same as 
RBAc. 

10.  else 

11.    Allocate an empty RRU, select an antenna set Am, allocate rbm 
consecutive RBs (i.e., RBAM) from the lowest available RB in Am. 

12.  end if   end for 

13. Compute the front-haul bandwidth and radio RB utilization for all 
RRU. 

 
We compare our proposed DRL policy with two 

benchmark heuristics, including the Intra-subarray BAA 
mapping algorithm (Intra-SA) and the Inter-subarray BAA 
mapping algorithm (Inter-SA). The key idea of the Intra-SA 
is to find the RRU that satisfies the current BAA requests in 
the occupied RRUs, and if not found, a new RRU is 
occupied to serve the current BAA request and update the 
available resources of the RRUs. The Intra-SA can minimize 
the front-haul bandwidth. However, it requires more 
antennas to be employed, resulting in lower radio RB 
utilization. Therefore, we consider that the 2D antenna array 
of each BAA may come from adjacent RRUs to improve 
radio RB utilization as much as possible. The process of the 
Inter-SA is shown in algorithm 2. 

Fig. 4 (a) demonstrates the results of the average cost 
calculated by Eq. (3). As shown in Fig. 4(a), it can be 
observed that the proposed DRL-based algorithm achieves 
the lowest average cost compared with the benchmark 
algorithms, which proves the effectiveness of the proposed 
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DRL-based algorithm. To reveal the fundamental reasons, 
we compare the results of front-haul bandwidth, antenna 
consumption and the radio RB utilization in Figs. 4(b), 4(c) 
and 4(d), respectively. Fig. 4(b) shows the front-haul 
bandwidth versus the number of BAA requests. As shown, 
the front-haul bandwidth requirements increase dramatically 
as the number of BAA requests increases. The DRL-based is 
higher than the Intra-SA but significantly lower than the 
Inter-SA. This reason is that the Intra-SA maps the 2D 
antennas of each BAA request to the same RRU to achieve 
the optimal front-haul bandwidth.  

Fig. 4(c) shows the number of used antennas versus the 
number of BAA requests. As shown, DRL-based achieves 
the lowest antenna consumption compared with Intra-SA and 

Inter-SA. This is because the Intra-SA attributes each BAA 
request to the same RRU, which results in using more 
antennas. In the three algorithms, Intra-SA uses the most 
antennas since the Intra-SA is essentially an algorithm that 
reduces the front-haul bandwidth at the cost of using 
additional antennas. From Figs. 4(b) and 4(c), we confirm 
that to achieve the minimum average cost, the DRL agent 
would trade some front-haul bandwidth for much improved 
antenna utilization. Fig. 4(d) shows the radio RB utilization 
versus the number of BAA requests. As shown, the DRL-
based employs a higher radio RB utilization while the Intra-
SA employs the lowest radio RB utilization. Accordingly, 
the DRL-based achieves the simultaneous optimization of 
the front-haul bandwidth and radio RB utilization.  

 

Figure 4. Number of BAA requests vs. (a) average cost, (b) Front-haul bandwidth (Gbps), (c) Number of the utilized antennas and (d) Radio RB utilization in 

large-scale network. 

 
Figure 5. Training results of DRL vs. benchmark heuristics in the large-scale network: (a) average cost, (b) Front-haul bandwidth (Gbps), (c) Number of the 

utilized antennas and (d) Radio RB utilization. 

Fig. 5 shows the training process of DRL in large-scale 
network with iteration-by-iteration average cost (Fig. 5(a)), 
front-haul bandwidth (Fig. 5(b)), antenna consumption (Fig. 
5(c)) and the radio RB utilization (Fig. 5(d)), where the 
number of BAA requests equal 280. Fig. 5(a) shows the 
trend of average cost against training iterations for DRL-
based algorithm. The training begins with high average cost 
because of the random exploration, then decreases quickly 
for improving algorithm, and finally converges to a cost 
average cost at 8.7. This means that good convergence 
performance of DRL-based algorithm is achieved. It is 
observed that by iterations 200, the average cost obtained by 
trained by DRL is lower than the other benchmark heuristics 
and the training curves in Figs. 5(a), 5(b), 5(c) and 5(d) 
become flatten and converged after iteration 200. 

V. CONCLUSION 

In this paper, a TWDM-PON based front-haul for 
mMIMO system was investigated. Specifically, we 

introduced the system architecture and the BAA mapping 
model for beamforming, and transformed it into an evolved 
3D bin-packing problem. Then, a DRL-based policy was 
proposed to balance between minimizing front-haul 
bandwidth and maximizing radio RB utilization. The 
extensive simulation results demonstrated that the proposed 
DRL-based policy can effectively optimize the front-haul 
bandwidth and radio RB utilization. 
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