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Dynamic Subcarrier Assignment in OFDMA-PONs
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Abstract—Orthogonal Frequency Division Multiplexing Access
Passive Optical Networks (OFDMA-PONs), a solution for the
next-generation optical access network, allows multiple optical
network units (ONUs) to dynamically share subcarriers (SCs) to
support efficient bandwidth allocation. In uplink transmission,
multiple ONUs can share orthogonal low bit rate SCs to transmit
data at different time slots (TSs) during the transmission cycle.
In this paper, the dynamic subcarrier allocation (DSA) scheme
based on deep reinforcement learning (DRL) is proposed for var-
ious ONU bandwidth requests. The novel scheme jointly allocates
time slots, subcarriers, and modulation formats in a dynamic and
flexible manner. The ONU can save transmit power by using a
lower order modulation format while meeting the delay require-
ment. The simulation part demonstrates how the proposed DRL-
based DSA scheme can be adapted to various situations, including
1) variation in the size of ONU bandwidth requests, and 2) variation
in the weight of different indicators. The extensive simulation
results show that, for the first time, the proposed DRL-based
DSA algorithm achieves optimal traffic latency with substantial
power saving, compared with the traditional two-dimensional DSA
algorithms.

Index Terms—Energy-saving, deep reinforcement learning,
dynamic subcarrier assignment (DBA), orthogonal frequency
division multiplexing access passive optical network (OFDMA-
PON).

I. INTRODUCTION

W ITH the ever-increasing demand for bandwidth from
various types of multimedia services, e.g., high defi-

nition video streaming, edge computing, cost- effective passive
optical networks (PONs) have become mature technologies for
broadband access and have been widely deployed worldwide
[1]. The so-called “passive” is that there is no active element
in the entire optical distribution network (ODN) of the PON
from the center office (CO) to user-side premise. Advantages
of using PON include large coverage area, reduced fiber de-
ployment, multicast and broadcast capabilities, reduced cost
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of maintenance, and ease of upgrades to higher bit rate [2].
However, with the rapid development of network technology
and digital services, to better support the high quality of service
(QoS) requirements of access networks, PON needs a higher
data access rate [3]–[5]. The wavelength division multiplexing
passive optical network (WDM-PON) has been proposed as a
candidate solution, which provides a logic end-to-end wave-
length connection for each user [1]. However, the available
wavelength capacity is not used effectively under the current
application scenario. The optical code division multiple access
PON (OCDMA-PON) designates each user a unique optical
code sequence. The coded bits are transmitted over the ODN
and then decoded using the exact optical code sequence at the
receiver of the destined user. With the capability of multi-user
wavelength sharing, the OCDMA-PON offers a more flexible
bandwidth allocation and supports a larger number of users
than WDM-PON [6], [7]. However, the spectrum efficiency
of OCDMA-PON is lower because it is based on the spread-
spectrum technique. Hence, the orthogonal frequency division
multiple access passive optical network (OFDMA-PON) that
enables the sharing of sub-wavelength resources in the frequency
domain is proposed to address the effective bandwidth allocation
[1], [3], [5], [8]–[11].

Orthogonal Frequency Division Multiplexing (OFDM) tech-
nology has recently gained remarkable development in the field
of optical networks [1]. Due to the advantages of large capac-
ity, high spectrum efficiency (SE), transparency to modulation
formats, flexible multiple address access, dynamic bandwidth
allocation (DBA), the OFDMA-PON has been considered as a
good candidate to further support the system capacity increase
for next-generation optical access network 2 (NG-PON2) [12].
Recent reports suggest that OFDMA-PON is a promising can-
didate for the systems beyond NG-PON2 [13], [14]. In addition,
OFDMA-PON allows different optical network units (ONUs) to
transmit upstream data through a set of shared orthogonal low
bit rate subcarriers (SCs) in different time slots (TSs) during the
transmission polling cycle to meet bandwidth requirements and
realize various data rates [10], [15].

The typical situation in OFDMA-PONs is that the bit rate of
each subcarrier is far lower than the average ONU data rate
[1]. OFDM divides the transmitted signal into a number of
low-rate SC signals, which partially overlap in the frequency
domain but do not interfere (using orthogonality) [1], [11]. This
means that in OFDMA-PONs, several SCs must be grouped
together to provide the required bandwidth for ONUs. Dynamic
subcarrier allocation (DSA) is designed to manage the allocation
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of SCs for each ONU request in OFDMA-PON. Whether an
ONU bandwidth request being satisfied would depend on the
following two factors: 1) the modulation format adopted by the
SCs, which determines the bit number transmitted per OFDM
symbol; for example, when the modulation format of M-QAM
is used, each OFDM symbol carries log2M bit [1]; and 2) the
baud rate of the OFDM symbol, which is closely relevant to the
available spectrum resource, i.e., how many SCs are allocated
to each ONU request. In the above first point, the modulation
formats allocated for an ONU request determine not only the
spectrum utilization of these SCs, but also the transmitting power
and traffic delay of the ONU. For instance, if the SCs allocated
for an ONU request adopt the lower-order modulation format,
then the ONU transmission power is lower, but the traffic delay
of the ONU request would be higher, because that more SC
resources required were less likely to be satisfied. By contrast,
if the higher-order modulation format is used for the SC, the
ONU transmission power is higher, but less SCs are needed for
the ONU request due to the higher spectrum utilization.

In practical applications, minimizing the power consumption
of ONU is always a priority, as it accounts for 60% to 70% of
OFDMA-PON’s energy consumption [15]. To realize energy-
efficient DSA in OFDMA-PONs, it is essential to jointly allocate
time slot, SC, and modulation format, because both the ONU
transmission power and the ONU traffic delay are closely corre-
lated. A well-designed DSA scheme needs to meet the following
challenges: 1) seek the appropriate scheduling order for multiple
ONU requests to reduce the traffic latency; 2) find the optimal
modulation format for each SC group to reduce the transmission
power.

Although the DSA problem has been investigated widely in
the wireless systems, there exist much different from our works
in terms of the network topology, the allocated resource and the
optimization objective. For example, the allocated resource in
[16] is only the radio resource blocks (RBs) to improve the cell
throughput and guarantee access proportional fairness. But in
our work, the allocated resources in OFDM-PON include the
subcarriers, the time slots and the modulation formats and our
goal aims to minimize the power consumption and the delay of
ONU requests, simultaneously.

Many solutions have been proposed to reduce the cost of
OFDMA-PON [1], [3], [5], [10], [11], [17]–[21]. In media access
control (MAC) layer, a DSA algorithm was proposed in [1] to
schedule the ONU upstream transmission based on its instan-
taneous bandwidth requirements and the existing traffic condi-
tions. In [17], the energy efficiency of WDM-OFDM-PON is im-
proved by sharing the OFDM modulation module on the physical
layer and the MAC layer. Early works related to algorithm-level
cost reduction mainly focuses on two-dimensional resource
scheduling, i.e., time slot and SC allocation. The DSA issue
of OFDMA-PON was also studied in [10], using the offline
scheduling framework to analyze the SC utilization and the total
granted time. In OFDMA-PON, a weighted DSA scheduling
algorithm was proposed to reduce the terminal wireless data
packet delay [11]. In [18], a randomized dynamic bandwidth
allocation algorithm for upstream access in OFDMA-PON was
proposed to improve throughput and reduce package delay. In

[19], the authors proposed and experimentally demonstrated an
all-optical virtual private network (VPN) supporting dynamic
bandwidth allocation (DBA) in OFDMA-PON system. Authors
in [20] proposed an interleaved polling with adaptive cycle
time (IPACT)-based 2D bandwidth allocation method for the
OFDMA-PON to guarantee delay performances for time sensi-
tive services. A fair-aware DSA algorithm in a distance adaptive
OFDMA- PON was proposed in [21]. In [5], a novel DSA algo-
rithm is proposed that combines traffic prediction technology to
reduce latency. A DSA framework based on weight distribution
in heterogeneous OFDMA-PON was proposed in [22]. However,
in all existing related works, neither the flexible configuration
of the SC modulation format nor the ONU transmission power
optimization was considered.

Recently, some solutions have been proposed to address the
ONU transmission power optimization issue. In [3], the ONU
transmission power is minimized by optimally allocating SC and
modulation format in each TS. Joint allocation of virtual subcar-
riers (VS), TS, and modulation formats was studied to maximize
energy savings with multi-dimensional resource re-allocation
and flexible ONU re-configuration [15]. The authors in [23]
proposed a distance-adaptive bandwidth allocation scheme to
realize low-cost high-capacity long-range OFDMA-PONs. In
[24], a number of sub-bands are grouped together as a band group
(BP) and multiple ONUs share the BP by time division mode to
realize an energy-efficient time division multiple band allocation
passive optical network (TDMBA-PON). However, none of the
above works considered the required quality of service (QoS)
such as traffic delay requirement.

Recently, Deep Reinforcement Learning (DRL) has been suc-
cessfully applied to some complex decision-making problems
in resource management. In particular, complex systems and
decision strategies can be modeled as deep neural networks
(DNN), trained to achieve optimal mapping from the input (i.e.,
state space) to the output (i.e., action space). The application
of the DRL-based algorithms in improving the performance of
communication networks has recently attracted much attention
from both academia and industry. Most of these efforts focus
on resource scheduling problems in systems and networking.
In [25], iterative point-wise reinforcement learning for highly
accurate indoor visible light positioning (VLP) was proposed to
reduce positioning errors. [26] studied the DRL-based slice ad-
mission policy to maximize the profits of infrastructure providers
(InP). [27] addressed the multi- resource cluster scheduling
problem with DRL strategy to minimize average job slowdown.
A joint BBU placement and routing strategy based on the DRL
in C-RAN was proposed in [28] to maximize resource utiliza-
tion. In [29], a DRL-based strategy was proposed to improve
the overall network performance in the elastic optical network
(EON).

In this paper, we propose a DRL-based DSA algorithm that
flexibly assigns SCs based on the ONU requests and the total
available SCs. It jointly allocates SCs, TSs, and modulation
formats to minimize the power consumption and the delay of
ONU requests, simultaneously. Specifically, it determines which
ONU request should be served first and which modulation format
is used for the SCs assigned to each ONU request. Extensive
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Fig. 1. OFDMA-PON architecture with S SCs and K ONUs.

numerical simulations are conducted to evaluate the perfor-
mance of our proposed DRL-based DSA scheme. Note that the
bassline heuristics used in the simulation part, such as Tetris,
SJF, Packer and Random [30]–[32], generally use fixed policy
to schedule the serving order of ONU requests. When network
state changes, these fixed policies cannot adapt to the changes
of the network state. Moreover, these bassline heuristics are not
designed based on the required optimization goal. However, by
iterative training, our proposed DRL-based scheme has the flex-
ibility to accommodate different network states and can achieve
the optimization in accordance with the specified goals, i.e.,
minimize the power consumption and the delay simultaneously.
Simulation results show that the DRL-based DSA scheme is
able to maintain low traffic latency while saving power using
low modulation format and has excellent robustness against the
variations in ONU demand.

The rest of the paper is organized as follows. Section II
presents the system architecture and formulates the problem.
Section III elaborates on the design of the DRL model that
optimizes the SC assignment. Section IV introduces the gradi-
ent descent based REINFORCE algorithm. Section V provides
system performance evaluation under various scenarios. Finally,
the conclusion is given in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The typical tree-topology architecture of an OFDMA-PON
system is presented in Fig. 1, in which three main components
are shown, including an optical line terminal (OLT) at the
central office (CO), an optical passive splitter-based distribution
network (ODN), and many client-end ONUs [33], [34]. The OLT
broadcasts the downstream data to each ONU through an ODN.
The ODN forwards upstream data from each ONU to the OLT.
The ONUs selectively receives downstream frames broadcast by
the OLT and transmits them to their client. As specified in IEEE
802.3ca [35], a power-adaptive burst mode receiver equipped
at OLT can respond to a large burst input power ratio from the
minimum receiver sensitivity (e.g.,−28 dBm) to overload (e.g.,
−6 dBm). Hence, the power difference that is caused by the
length difference of distributed fibers to the different ONUs, is
assumed to be handled completely by the burst mode receiver,
thus it is not considered by this paper.

Generally, the up-/down-stream data traffic are transmitted
through an optical wavelength channel, which can be further
divided into many OFDM SCs in the frequency domain. In
this paper, we focus on the upstream (US) transmission of the
OFDMA-PON system, where the total US bandwidth is divided
into the many orthogonal SCs, a part of which can be assigned
to a different ONU in different TSs. The SCs can be grouped
into SC channels, each of which includes one or more SCs. To
avoid inter-ONU interference, we assume that a remotely seeded
carrier from OLT and an estimation of the differential delay are
adopted in each ONU, and thus the carrier frequency offsets
(CFO) and frame delay of each US multiple access signal are
eliminated significantly [36].

We model the OFDMA-PON system with S SCs and K ONUs,
and each SC can only be occupied by one ONU within each TS.
The SCs used each time by an ONU must be adjacent. In a
TS, each OFDM SC is shown in Fig. 1 as a rectangular block
and each SC block stands for a bandwidth of 100 MHz (i.e.,
fSC = 100 MHz). The finer-granularity SC will improve the
spectrum utilization and avoid wasting bandwidth resources.
We assume the bandwidth request of each ONU has already
included a small portion of guard band (GB) to avoid inter-ONU
interference. Note that, since the different modulation formats
are allocated to the different SCs according to DSA algorithms
for the ONUs, i.e., the SC allocation and bit allocation, the
signal transmitting power and traffic average delay of the ONU
are different, correspondingly. For example, given an ONU
bandwidth request, if the ONU chooses to use a low-order
modulation format, the ONU’s transmitting power will be lower,
but the traffic average delay of the ONU is more likely to be
higher because more SC resources would be less available at
that time. Note that the modulation format adopted is a key
factor that affects system energy consumption and ONU traffic
delay performance simultaneously. Therefore, it is important to
carefully allocate the TSs, SCs, and the modulation formats for
an ONU bandwidth request in OFDMA-PONs.

We assume that the modulation formats of all SCs assigned
to one ONU are unique, and hence denote bk as the number
of bits carried by an OFDM symbol for the kth ONU. bk takes
values of 12, …,N, when the modulation format is from BPSK
to 2N-QAM, where N is the maximum number of bits that can
be transmitted per OFDM symbol.
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As described in [3], since electrical power accounts for a
large portion of the ONU’s total transmit power, the optical
power of the ONU can be ignored. Hence, we design the power
consumption model for the ONU as

Pk =
Ek

Tk · a2k
(1)

where ak denotes the channel gain of the kth ONU, Tk is
the duration of the kth ONU request in term of the TSs, and
Ek represents the required energy consumption to support bk
bits/symbol for the given bit-error-rate (BER) Pe during the
Tk. For a multicarrier system transmitting over a linear time-
invariant channel with additive white Gaussian noise (AWGN),
the required energy consumption Ek can be expressed as [37]

Ek =
N0

3
·
[
Q−1

(
Pe

4

)]2
· (2bk − 1

) · ceil( Rk

bk · fSC

)
· Tk

(2)
where N0 is the noise power spectral density; the quality factor
is Q(x) = (1/

√
2π)

∫∞
x e−t

2/2dt, Pe is a given BER, Rk is the
data rate required by the kth ONU. Obviously, given a fixed Pe

of 10-9, the value of (N0/3) · [Q−1(Pe/4)]
2is a constant, and

equals to 0.4039. Note that Eq. (2) to compute the transmitting
power with the basic modulation format (e.g., BPSK) and the
corresponding values are also used in [15]. Since the supposition
that the signal baud rate is roughly equivalent to the occupied
bandwidth by the transmitted signal, the ceil(Rk/(bk · fSC))
is the number of the required SCs by the kth ONU. Thus, we
simplify Eq. (2) as follows:

Ek = 0.4039 · (2bk − 1
) · ceil( Rk

bk · fSC

)
· Tk (3)

Since the number of bits transmitted per OFDM symbol is
bk for the kth ONU with the modulation of 2bk−QAM and
the choice of modulation format would have a major impact
on the transmission quality, we need to carefully choose the
bk. Specifically, if the overall signal power remains constant,
a larger constellation resulting from a higher bk value would
cause a degraded BER. That is, it requires an increase in signal
transmission power to satisfy the BER requirement.

In this paper, our objective is to minimize the average latency
and average transmitting power of ONUs by finding an optimal
allocation of bk(k ∈ {1, 2, . . . ,K}) on the condition that the
traffic demand of each ONU is met.

Minimize

(
α ·
∑
k∈K

ck − Tk

Tk
+ β ·

∑
k∈K

Pk − P fix
k

Pk

)
(4)

The α and β are the factors introduced to adjust the weight of
the two terms. The first term reflects the normalized total traffic
delay, and the second term represents the normalized total ONU
transmitting power. ck is the completion time of the kth ONU
request. Pfix k is the transmitting power of the kth ONU with
a fixed modulation format capable of satisfying all ONU traffic
requirements.

Fig. 2. Demonstrating agent-environment through DNN interaction in RL.

III. DEEP REINFORCEMENT LEARNING MODEL FOR

SUBCARRIER ASSIGNMENT

Fig. 2 shows a typical Markov decision process that learns
from agent-environment interactions to achieve certain goals.
Learners or decision-makers are called agents. What it interacts
with, including everything outside the agent, is called the envi-
ronment. The agent is constantly interacting with the environ-
ment, i.e., the agent chooses an action and then the environment
reacts to it and reveals environment changes to the agent. At
each time step t, the agent observes state St and selects an action
At based on it. As a result of the action, the agent receives
an immediate reward Rt+1 and the state of the environment
transfers to St+1. The goal of the agent is to ultimately achieve
higher cumulated rewards or long-term rewards, and often, in
order to gain higher cumulated rewards, immediate rewards must
be waived.

The proposed DRL-based DSA policy is modeled as a policy
network, trained to find the optimal bk allocation (i.e., the
optimal modulation format) that minimizes both the traffic delay
and power consumption of ONUs. To establish the DRL-based
model for DSA, we define the state, action, and reward of
DRL-based policy as follows:

State: We represent the state of the system, which includes
the current subcarrier allocation state of the allocated ONU
requests (see Fig. 3(a)) and the unallocated ONU requests in
request slots (see Fig. 3(b)) and backlog queue (see Fig. 3(c)).
Note that Fig. 3(a) is a two-dimensional image. The vertical axis
represents the time dimension that begins with the current time
step and lasts for T steps. The horizontal axis describes the SC
resource requirements of the ONU requests. The different colors
in the image represent different ONUs. For example, the blue
color blocks in Fig. 3(a) indicate that the ONU request which
needs two subcarriers and lasts for two time slots is successfully
assigned. The Request Slot images in Fig. 3(b) represent the
unallocated requests in the case with different options of the
modulation formats. For instance, the request in Request Slot 1
has a length of two time slots. Depending on the three different
modulation formats, it requires four SCs using BPSK or two
SCs using 4-QAM, or one SC using 8-QAM, respectively.
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Fig. 3. Example of a state representation with two pending request slots and three modulation formats, (a) Current subcarrier allocation state, (b) Unallocated
ONU requests in request slots, and (c) Backlog queue.

Note that, we would prefer to maintain the input of the neural
network to be represented in a fixed form images, hence only
M request slots are set to accommodate the earliest requests to
be allocated (e.g., M = 2 in Fig. 3(b)) [27]. The information
on the remaining ONU requests is stored in a backlog queue as
shown in Fig. 3(c). Restricting attention to earlier arriving ONU
requests would benefit latency reduction and limit the action
space so that the learning process can be more efficient.

Action: For each time step, the agent may want to schedule
any subset of the M ONU requests. There are N alternative
modulation formats (i.e., from BPSK to 2N-QAM), only one of
which is selected for scheduling at a time. However, scheduling
in this way would require an (N+1)M action space, which can
make the learning process particularly challenging. To address
this issue, we divide the actual time step into a few time-frozen
steps [27], where the agent can choose only one ONU and
designate the modulation format. Once the request is scheduled,
it is removed from the corresponding request slot within a time
step. In this case, if there is a request queuing in the backlog
queue, it will be retrieved and accommodated in the request slot.
The agent also needs to determine when to exit the frozen step by
adding an exit action into the action space, making the size of the
action space being M×N+1. In detail, the action space is given
by {∅, (1,1), (1,2), …, (1,N), (2,1), …, (M,N)}, where a = (m,n)
indicates that the modulation format n is selected for the ONU
request in request slot m. a = ∅means that the agent chooses to
quit the frozen step, and no more ONU requests will be scheduled
in the current time step. Additionally, at each frozen step, if the
remaining resource cannot satisfy the ONU request, the agent is
forced to exit the frozen time step as well. Afterward, time will
continue rolling (i.e., time step t+1). By this time, the resource
pool image, the request slot image, and the backlog queue image
will all be updated. During these images are updated, a newly
arrived request can be placed in an idle request slot; otherwise,
the request is placed in the backlog queue when the request slot
is not available.

Reward: We design the reward function to seek the best
strategy for our goal, which is to reduce both traffic latency

and power consumption by jointly allocating TSs, SCs, and
modulation formats. For each time step, we set the reward as

Rt = −α·⎛
⎝∑

j∈J

1

Tj
−
∑
k∈K ′

1

⎞
⎠− β ·

∑
k∈K ′

Pk − P fix
k

Pk
(5)

where J is the set of ONU requests in the current system, K’ is
the set of ONU requests scheduled at this time step. Tj is the time
length of the jth ONU request, i.e., how long the request last.
Note that the agent does not receive any intermediate incentive
for decisions made in each frozen time step. By interacting
with the environment, the agent attempts to select an action to
maximize the sum of the discounted rewards it receives in the
future. The goal is to maximize the expected cumulative dis-
count rewards:E[

∑∞
t=0 γ

tRt], where γ ∈ (0, 1] is the discount
rate. By setting γ = 1, the cumulated reward of the first term∑

j∈J 1/Tj −
∑

k∈K ′ 1 coincides with the normalized queuing
time of the jth ONU request, which consists of the time spent in
the backlog queue and the ONU request slot. We use the second
term to evaluate the effect of power consumption.α andβ are the
weights of latency and power consumption. We set the weights
α = β = 0.5, so that the cumulative reward is maximized in
order to minimize both delay and transmitting power. At each
time step t, the agent observes state St and selects an action At

based on the expected cumulative discount reward. After a time
step, the agent receives Rt+1 and the state of the environment
transitions to St+1.

IV. GRADIENT DESCENT BASED REINFORCE ALGORITHM

A policy refers to the probability distribution that maps from
state space to action space:π(s, a)→ [0, 1]. If the agent follows
the policy π at time t, then π(a|s) is the probability of taking
action At = a under state St = s. What RL learns is how to
optimize the policy to maximize the expected cumulated reward
(also referred to as Return) G. Initially, the policy is stored in
a tubular form because there are just a handful of states and
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actions. However, with the increasing complexity of problems,
the number of state-action pairs is exploding. To handle such an
issue, the function approximation approach is introduced. As one
of the most popular solutions, DNN is adopted and being used as
a policy network. By adding a policy network parameter θ, the
policy becomes π(a|s, θ) = P{At = a|St = s, θt = θ},which
represents the probability of taking action a under the condition
of state being s and policy parameter being θ at time t. The
policy network receives the system state (set of images shown
in Fig. 3) as input and the output indicates which ONU request
is scheduled and the allocation of bk.

The policy gradient method, which directly approximates
the optimal policy, does not require to form an approximation
function. It learns by performing a gradient descent on the policy
parameters. The objective is to maximize the expected cumula-
tive reward, and the gradient of the given target is provided by
[38]:

∇J (θ) = Eπ

[∑
a
qπ (St, a)∇π (a|St, θ)

]

= Eπ

[
Gt
∇π (At|St, θ)

π (At|St, θ)

]

= Eπ [Gt∇ lnπ (At|St, θ)] (6)

where qπ(st, a) is the action-value function, defined in Eq. (7).
It calculates the expected cumulative reward that selects action
a under state s following policy π.

qπ (s, a) = Eπ [Gt|St = s,At = a]

= Eπ

[
T−t∑
k=1

Rt+k|St = s,At = a

]
(7)

And Gt is the cumulative reward, the sum of rewards starting
from the current time step t to the terminal step T. It is defined
by:

Gt =

T−t∑
k=1

Rt+k (8)

The key idea of the policy gradient method is to estimate the
gradient by observing the execution trajectory: (S0, A0, R1, S1,
A1, R2, …, ST-1, AT-1, RT) following the policy πθ, then update
the policy network parameters θ by gradient descent as follows:

θt+1 = θt + αGt∇ lnπ (At|St, θ) (9)

where α is the step size. This algorithm is also known as the
REINFORCE algorithm [38].

The increment is proportional to ∇ lnπ(At|St, θ) and Gt,
where ∇ lnπ(At|St, θ) is the direction that increases the prob-
ability of picking action At and the return Gt indicates how far
should the θ update is going in this direction, i.e., if Gt is positive
and large, then the corresponding action At is preferred and vice
versa. This allows the policy network parameters to move toward
the direction that favors the action that yields the highest return.

We train the policy network in an episodic manner. In each
epoch, a fixed number of ONU requests arrive and are scheduled
according to the policy. Each epoch ends with all ONU requests

TABLE I: Pseudocode for Training Algorithm.

Input: Differentiable parameterization policy π(At|St, θ)
Output: Optimal resource allocation policy
1: Initialization of policy parameters: θ ← 0 ;

2: For each ONU request set:
3: For each episode i = 1, …, L:
4: For each action in episode t = 0, 1, …, T-1:
5: generate Si

0, A
i
0, R

i
1, . . . , S

i
T−1, A

i
T−1, R

i
T ,

follow policy π(·|·, θ)
6: Gi ←

T∑
k=t+1

Ri
k

7: bi ← 1
N

N∑
i=1

Gi

8: θ ← θ + α(Gi − bi)∇ lnπ(At|St, θ)
9: End

10: End
11: End

being scheduled. Table I shows the pseudo-code for the training
algorithm.

In order to train a generalized policy, we use multiple sets
of ONU requests as the training set, which we refer to as the
ONU request set. In each training iteration, we repeatedly run L
rounds of all C ONU request sets to explore the probability space
of possible actions using the current policy and use the resulting
data to improve the scheduling policy. Specifically, a total of C·L
trajectories are recorded, including the state, action, and reward
for each step and these data are used to calculate the discounted
cumulative reward Gt for each time step t of each episode. We
then train the neural network using a modified version of the
previously described REINFORCE algorithm.

Equation (9) is used in the original REINFORCE algorithm
to estimate the policy gradient. The downside of this equation is
that the gradient estimate has a high variance, which can be
reduced by subtracting a baseline bt. The baseline bt is the
average of return Gt (see line 7 in Table I). The θ update equation
is then rewritten as follows:

θt+1 = θt + α (Gt − bt)∇ lnπ (At|St, θ) (10)

V. PERFORMANCE EVALUATION

A. Simulation Setup

In our simulations, the ONU requests arrive according to
the Bernoulli process. The request arrival rate λ (i.e., a new
ONU request arrives with a certain probability at each time
step) ranges from 0 to 1 with a step size of 0.1. There are
128 SCs for the upstream transmission and the total bandwidth
is 12.8 GHz. To reduce computational complexity, only 32 SC
channels are considered, and each channel includes 4 SCs. All
ONUs support upstream SC channels with the same transmission
characteristics. The duration of ONU requests is set as follows:
80% of the ONU requests have a time length chosen uniformly
between 1t and 3t; the remainder is chosen uniformly from 10t
to 15t.
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The SC modulation format can be chosen from BPSK, 4-
QAM, 8-QAM, and 16-QAM. Our proposed DRL-based scheme
can flexibly select the most suitable modulation format accord-
ing to the different bandwidth demands of the ONUs, which
is compared against four benchmarks using a fixed modulation
format. In the benchmarks, the lowest-order modulation format
would be adopted for all ONU requests, even though the ONUs
all have very different bandwidth requirements. It is because
that using a fixed lowest-order modulation format is an effective
way to reduce the required power consumption to send ONUs’
signals.

We assume that the bandwidth requirement of each ONU is
uniformly distributed in the range of [Dmin, Dmax], and the lower
bound Dmin is set to 3.2 Gb/s.

With the different values of the upper bound Dmax, the fol-
lowing three cases are considered:
� Case 1: when the Dmax � (12.825.6] Gb/s, the fixed modu-

lation format is 4-QAM for other benchmarks. In this case,
without loss of generality, we set Dmax to a median value
as (12.8+25.6)/2= 19.2 Gb/s. Thus, the range of values for
bandwidth demand of each ONU is [3.2, 19.2] Gb/s, which
corresponds to [16, 96] SCs modulated with 4-QAM.

� Case 2: when the Dmax � (25.638.4] Gb/s, the fixed mod-
ulation format is 8-QAM for other benchmarks. Likewise,
we set Dmax to a median value as 32 Gb/s. Thus, the range
of values is [3.2, 32] Gb/s, corresponding to [8, 96] SCs
modulated with 8-QAM.

� Case 3: when Dmax � (38.451.2] Gb/s, other benchmarks
would adopt the 16-QAM as the fixed modulation format.
So we can set Dmax to a median value as 44.8 Gb/s. Thus,
the range of values is [3.2, 44.8] Gb/s, corresponding to [4,
96] SCs modulated with 16-QAM.

Hence, those ONU whose bandwidth demand larger than
51.2 Gb/s cannot be satisfied, even with the highest-order mod-
ulation format available in the system. Note that in each case,
the ONU bandwidth request has already included a two-SC GB
between every two SC groups coming from different ONUs, in
order to avoid the inter-ONU interference. For instance, if the
ONU bandwidth requirement is 3.2Gb/s, 4 SC channels (i.e., 16
SCs in total) are assigned to the ONU with 4-QAM modulation,
where 14 SCs are used for US data transmission, and the other
2 SCs are reserved as guard band.

The four benchmarks are: 1) Random, which selects ONU
requests randomly, 2) the shortest request first algorithm (SRF),
which serves ONU requests in the ascending order of their
duration [30], 3) the resource wrapper Packer algorithm [31],
which assigns resource according to the order of alignment
between resource requirements and resource availability, 4) the
synthesis Tetris algorithm, which balances the advantages of
taking short-term request and resource packaging [32].

In this simulation, the time window of the State space ob-
served by the DRL agent is 20t long and each scheduling episode
for each ONU request set lasts 50t. The agent picks a serving
ONU request from M = 8 ONU request slots and chooses a
suitable modulation format from N = 4 candidate modulation
format, while observing other ONU requests in the backlog
queue. The length of the backlog is set to 64. As mentioned in the

Section III, part “Action”, the size of action space is M×N+1 =
33, and hence the output layer of DNN has 33 neurons. Because
the hidden layer is fully connected to the output layer, the number
of neurons on the hidden layer should be the multiples of 33
neurons. After multiple testing, we found that a hidden layer of
33 neurons achieves the best performance. Therefore, the policy
network is realized by a DNN with a fully connected hidden layer
of 33 neurons and a total of 532323 parameters. The activation
function used for the DNN is Rectified Linear Unit (ReLU) [38].
For each training iteration, we use 50 ONU request sets and run
10 Monte Carlo simulations in parallel for each request set. We
update the policy network parameters with a learning rate of
0.001.

B. Simulation Results and Discussions

The simulation results drawn below has been processed. In our
optimization objective as shown in Eq. (4), the two targets under
investigation (i.e., average traffic latency and average transit
power) vary in the different range of values, which might even be
not the same order of magnitude (refer to Fig. 10). To obtain the
same level of optimization for the two targets in the DRL-based
DSA policy, we apply a balance coefficient ρ to all data of the
average traffic latency. The ρ value can be determined when both
of the two targets achieve optimal states in the case of α = β
= 0.5. Having run numerous tests, we set ρ value to be 0.087,
0.124 and 1, respectively, in the Case 1, Case 2, and Case 3. It is
due to the fact that the optimization scopes of the two targets are
also not identical in the different cases of the ONU bandwidth
demands. In the following simulations, the two weights are set
the same (i. e., α = β = 0.5), to equally treat the two above
target metrics.

In Fig. 4, test results of total reward, average traffic latency,
and average transmit power are given out in Case 1 with Rk �
[0.32,1.92] Gb/s, where the fixed modulation format of the four
benchmarks is set to be 4-QAM by the above rules. Fig. 4(a) and
(b) compare the total reward and the traffic delay performance
under the variance of the ONU request arrival rate. Compared
to the benchmarks Packer and Random, SRF has better perfor-
mance in terms of both reward and traffic delay. In light-load
conditions, SRF performs similar to Packer. As load increases,
the performance gap between SRF and Packer continues to
increase and SRF is approaching Tetris. While Packer reserves
more resources for large requests than SRF, more requests are
using reserved resources under heavy load, which directly brings
Packer to the worst delay performance. The Tetris outperforms
the SRF and Packer by combing their advantages. As shown,
the proposed DRL performs better than heuristics for the three
metrics under high load conditions due to the ability of the DRL
to learn to assign modulation formats flexibly to ONU requests
with different bandwidth requirements to save power (Fig. 4(c))
and to reserve resources for potential low demand requests to
reduce latency (Fig. 4(b)), while the total reward is maximized.

Figs. 5 and 6 demonstrate test results in Case 2 with Rk �
[0.32, 3.2] Gb/s, and in Case 3 with Rk � [0.32, 4.48] Gb/s,
respectively. In the Case 2 and Case 3 of the ONU bandwidth
requirements, the fixed modulation format of the benchmarks is
set to be 8-QAM and 16-QAM, respectively. From these figures,
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Fig. 4. Test results of (a) Total reward, (b) Average traffic latency, (c) Average transmit power in Case 1 with Rk � [3.219.2] Gb/s, when α=β=0.5.

Fig. 5. Test results of (a) Total reward, (b) Average traffic latency, (c) Average transmit power in Case 2 with Rk � [3.232] Gb/s, when α=β=0.5.

Fig. 6. Test results of (a) Total reward, (b) Average traffic latency, (c) Average transmit power in Case 3 with Rk � [3.244.8] Gb/s, when α=β=0.5.

Fig. 7. Training results of (a) Total reward, (b) Average traffic latency, (c) Average transmit power in Case 1 with Rk�[3.219.2] Gb/s, when α=β=0.5 and λ=1.

we can find that the three performance metrics of the proposed
DRL is better than that of all the benchmark heuristics. In addi-
tion, from Case 1 to Case 3, as the ONU bandwidth requirements
increase, the superiority of the proposed DRL approach become
clearer, comparing with other benchmark heuristics. This is

because the increase in the ONU bandwidth demands makes the
DRL allocate modulation format more flexibly, which does not
only save the power, but also reduce the traffic delay. Moreover,
the reduction in power consumption contributes more to the total
reward.



ZHU et al.: DYNAMIC SUBCARRIER ASSIGNMENT IN OFDMA-PONS 8616011

Fig. 8. Training results of (a) Total reward, (b) Average traffic latency, (c) Average transmit power in Case 2 with Rk � [3.2, 32] Gb/s, when α=β=0.5 and λ=1.

Fig. 9. Training results of (a) Total reward, (b) Average traffic latency, (c) Average transmit power in Case 3 with Rk�[3.244.8] Gb/s, when α=β=0.5 and λ=1.

Fig. 10. The impact of weight coefficient α on the test results of (a) Average traffic latency, (b) Average transmit power, in the different cases of Rk.

Fig. 7 demonstrates how the DRL agent learns over the
training iterations in Case 1 with Rk � [0.32,1.92] Gb/s, when the
request arrival rate λ is 1. As stated in Section IV, the cumulative
reward (i.e., total reward) of each trajectory is G0, which can be
calculated by Eq. (8). Hence, for all C·L training trajectories,
there are C·L G0 (i.e., G0

1, G0
2, …, G0

C·L). The max(G0
1, G0

2,
…, G0

C·L) of all C·L trajectories recorded in a training iteration
is DRLmax, while the mean value G0 of all C·L trajectories in
a training iteration is defined as DRLmean. At the beginning of
the iteration, the DRL does not have any prior knowledge about
the dynamics of the system. Its behavior is therefore similar to
a random strategy and behaves worse than all the benchmarks.
As the iteration continues, both the DRLmax and DRLmean are
steadily increased with continuous training. After about 100

training iterations, the DRL agent learns that it can improve the
total reward by reserving some resources for small requests and
using the lower modulation formats more frequently. Afterward,
the DRL proceeds to try to increase the total reward until the
difference between DRLmax and DRLmean gradually converges
to a stable value after 1500 iterations, implying that the system
has reached an optimum state. The simulation results in Fig. 7(b)
and (c) show that the DRL-based scheme achieves the optimal
traffic delay while at the same time reducing the transmission
power as much as possible.

Figs. 8 and 9 show the training results in Case 2 with Rk

� [0.32, 3.2] Gb/s and Case 3 with Rk � [0.32, 4.48] Gb/s,
respectively, when the λ is 1. Compared with the training results
of Case 1 in Fig. 7, the DRL still learns to reserve some resources
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Fig. 11. The distribution of the allocated modulation formats in the different
cases of Rk, when using the proposed DRL method and λ = 1.

for small requests at first and tends to use lower modulation
formats to obtain a higher reward afterward. After about 1500
iterations, the system reaches its optimum state, where all three
indicators are optimal. Note that in Fig. 9(c), although DRL
continues to attempt to further increase the value of the total
reward by slightly adjusting the modulation format to reduce the
transmission power, there is no significant improvement which
indicates that the system has reached its optimum state at this
point.

In Fig. 10, we investigate the impact of the different α and β
weight values on the following performance metrics: (a) service
delay and (b) transmit power, when λ is set to 1. In Fig. 10(a),
whenα= 0.7, the DRL achieves the lowest service latency, since
the DRL attaches more attention to the traffic latency rather
than the transmit power. In the case, the DRL would tend to
select a higher modulation format to reduce service latency. In
Fig. 10(b), the DRL with α = 0.3 (i.e., β = 0.7) has the lowest
transmission power, because the DRL prefers to optimize the
transmit power. These above results indicate that the importance
of the two metrics can be adjusted by changing the values of α
and β, and that the DRL can be specially trained to optimize
for customized objectives. In addition, we notice that compared
with the DRL with the α= β = 0.5, which represents a baseline
scenario, the benchmark algorithms face higher traffic delay
and transmission power as the traffic load increases. However,
the DRL can adapt to all kinds of load conditions and achieve
optimal results. This is because, as load increases, the flexible
and adaptive assignment of the modulation formats for ONU
bandwidth demands would facilitate to use more efficiently these
network resources.

Fig. 11 shows the distribution of the allocated modulation
formats in different cases of Rk, when using the proposed DRL
method and the λ is 1. It is observed that after iterative training
of the DRL, coincidentally the most frequently used modulation
format is just what the benchmarks adopts, i.e., 4-QAM for Case
1, 8-QAM for Case 2 and 16-QAM for Case 3. As mentioned
above, the fixed modulation format adopted by the benchmarks

depends on the upper bound Dmax of the ONU bandwidth
demand, since the fixed modulation format is required to be
applied for all the ONUs. Hence, the available lowest-order
modulation format is chosen, and it can effectively reduce the
required power consumption to send ONUs’ signals. In addition,
to further reduce the power consumption, a much smaller set
of the ONU requests with the smaller bandwidth demand can
be assigned with the lower modulation format than the most
frequently used one.

VI. CONCLUSION

We have proposed a novel three-dimensional DRL-based
DSA algorithm in OFDMA-PON, which jointly allocates the
TSs, SCs, and modulation formats to optimize the average delay
and average power consumption of the ONU requests simulta-
neously. Simulation results show that the proposed DRL-based
DSA scheme can significantly reduce average delay and aver-
age power consumption, compared to benchmark scheduling
schemes such as the SRF, Packer, Tetris, Random strategies.
From the analysis of the simulation results, we found that the
reason for DRL to be able to achieve better performance is that
a more flexible and adaptive modulation scheme is adopted.
Since the DRL agent can improve itself by directly learning
from experience, it is a powerful and versatile tool for many
optimization issues in future optical networks.
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