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Abstract: This paper proposed a dynamic resource allocation scheme in nonlinear elastic optical 

networks based on deep reinforcement learning, which achieves significant blocking probability 

reductions of more than 44.1% compared with baseline algorithms. 

 

1. Introduction  

Elastic optical networks (EONs) have emerged as a promising technology to accommodate dynamic and diverse 

demands of next-generation applications by allocating resources adaptively [1]. Most existing related works on 

resource allocation in EONs are based on predefined transmission-reach (TR) limits, i.e., each modulation format 

has a corresponding TR limit, which requires a large margin for the most connections to guarantee quality of 

transmission (QoT) in the worst case through resource overprovisioning and hence causes inefficient resource 

utilization [2]. Hence, some studies have been proposed to significantly improve spectral efficiency by accurately 

accounting for physical-layer nonlinear impairments (NLI) using the Gaussian Noise (GN) model in EONs, 

compared with existing TR-based methods [3, 4]. The impairment-aware dynamic resource allocation in EONs 

includes two main challenges: 1) the routing and spectrum allocation (RSA), where the spectrum continuity and 

contiguity constraints are considered [1]; and 2) the modulation format assignment accounting for the NLI [3]. This 

is called the routing, modulation, and spectrum assignment (RMSA) problem designed for nonlinear EONs. The 

authors in [3] calculate the NLI interference from other connections and jointly optimize physical layer resources of 

each connection in static EONs by using a mixed integer programming (MILP) and a decomposition heuristic. In [4], 

the authors proposed a hybrid NLI estimation technique along with a sophisticated K-least congested path routing 

strategy to solve the NLI-aware resource allocation problem in dynamic EONs. However, the above these works 

only rely on fixed heuristic policies based one simple empirical design regardless of the time-varying EON states, 

and therefore cannot achieve dynamic adaptive resource allocation in EONs.  

 Recently, Deep Reinforcement Learning (DRL) has demonstrated beyond human-level performance for resource 

allocation problems. DRL can learn successful policies progressively without any prior knowledge of the target 

system’s behavior, by accumulating action experiences from repeated interactions with the target systems and by 

reinforcing actions leading to higher rewards [5]. Moreover, DRL can support a variety of optimization objectives 

just by setting different reinforcement rewards. The authors of [6] present a DRL-based online RMSA framework 

for dynamic traffic demands in EONs, which just adopts the TR limits to determine the modulation format and does 

not consider the actual network state. This paper, to the best of our knowledge, is the first attempt to address an 

impairment-aware dynamic RMSA issue in nonlinear EONs based on DRL technology. We structure a deep neural 

network (DNN) to perceive the complex EON state, and a self-learning intelligent agent to achieve autonomous and 

optimal nonlinear RMSA policy. Simulation results in the 14-node NSFNET topology show that the proposed DRL-

based nonlinear RMSA outperforms the baseline nonlinear RMSA heuristics.  

2. Nonlinear RMSA Problem Formulation 

We model the EON as a directed graph G (V, E, F), where V and E are sets of nodes and fiber links, F denotes the 

frequency slot (FS) usage on each link eE. A dynamic lightpath request (LR) with bandwidth b and service 

duration τ from source node o to destination node d can be modeled as R(o, d, b, τ). To serve R, we need to compute 

an end-to-end routing path po, d, determine a QoT-guaranteed modulation format m, and allocate a set of spectrally 

continuous and contiguous FS’s according to b and m on each fiber link along po, d. Under the assumption of Nyquist 

spectral shaping [7], the number ni of FS’s allocated to Ri can be computed as  i i i PM BPSKn b m B     , where BPM-BPSK 

is the data rate a FS can provide with modulation format PM-BPSK, and mi  M = {1, 2, 3, 4} denotes the spectral 

efficiencies of PM-BPSK, PM-QPSK, PM-8QAM and PM-16QAM respectively. We can also use mi to denote the 

corresponding modulation format assigned to connection Ri. For each available mi, its required minimum signal-to-

noise-ratio (SNR) threshold SNR
m 

th  for mi  M under a certain pre-forward error correction (FEC) bit-error rate (BER) 

(4×10-3 in this paper) is given in Table I [7]. The connection QoT can be estimated based on the GN model [7], 

which is an analytical model to calculate NLIs in dispersion-uncompensated links. By combing various PLIs 
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including amplified spontaneous emission (ASE) noise, self-channel interference (SCI) and cross-channel 

interference (XCI), we can calculate the SNR for each connection Ri as, 

 

     

   
22 3 2 3

2 2

2 2

1      1                           2

23 3
ln    3      ln     4

2 2 2

ASE L spani

i i sp iASE SCI XCI

i i i

ij jSCI span XCI span

i i i i ij

j i ij j

G
SNR G e hvn N

G G G

f fG G
G f N G N

f f



  

     

  
 

    
       



，        ，

， ，

   

where Gi, Gi
ASE, Gi

SCI and Gi
XCI denotes power spectral density (PSD), ASE noise, SCI, XCI of Ri respectively. α, 

γ, β2, h, nsp, v, L denotes the power attenuation, the fiber nonlinear coefficient, the fiber dispersion, Planck’s constant, 

the spontaneous emission factor, the optical carrier frequency and the length of each span respectively. Δfi, Δfj and 

Δfij denotes the bandwidth of Ri, the bandwidth of Rj and the center frequency difference between Ri and Rj 

respectively. The number of spans propagated by Ri along the route is denoted by N
span 

i , and N
span 

ij  denotes the number 

of spans shared by the routes of Ri and Rj. Note that, in dynamic RMSA, LRs arrive and expire on-the-fly and need 

to be served upon their arrivals, and hence Ri incurs XCI from both existing and future LRs. But the XCI effect from 

the future LRs on Ri  is not available at the moment of the provisioning Ri. Therefore, we assume that: 1) the number 

of future LRs is estimated by multiplying the average arrival rate and the service duration of current Ri, 2) the 

bandwidth of future LR is identical to the average bandwidth of all LRs, 3) the number of FS’s used by a future LR 

is calculated by applying the lowest modulation format, and 4) the allocated FS’s for future LRs are placed next to 

the highest FS of current Ri in the fiber links. Ri is served successfully only if its SNR satisfies the SNR threshold of 

the used mi, i.e., SNRi≥SNR
m 

th . The objective of the dynamic nonlinear RMSA is to minimize the request blocking 

probability, which is defined as the ratio of the number of blocked LRs to the total number of LRs over a period. 

3. DRL-based Nonlinear RMSA Design  

Fig. 1(a) illustrates the operation principle of the proposed DRL-based Nonlinear RMSA. The intelligent agent is 

presented as a DNN, referred to as a policy network. Upon Ri arrives at t time, the policy network takes the state 

information st including the Ri and the current network state as the input (step 1), and outputs the probability 

distribution πt (A| st, ) over all possible action space A and  represents the policy parameters of the DNN (step 2). 

Based on the πt, the DRL-based nonlinear RMSA agent takes an action atA and attempts to establish the lightpath 

for Ri (step 3). A reward rt related to the RMSA operation is feedback (step 4). The rt, together with st and at, can be 

used to train the nonlinear RMSA agent. The objective of the agent is to maximize the long-term cumulative reward, 

which is defined as 
 

'
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   [6]. The  0,1   is a discount factor that decays future rewards.  

 
Fig. 1. (a) Operation principle of the DRL with DNN and (b) state representation. 

Fig. 1(b) shows the state representation s for the DRL-based Nonlinear RMSA, which includes the information of 

Ri and spectrum utilization on the K-shortest candidate paths with J available FS-blocks based on M different 

modulation formats. For each k of the K candidate paths, we use M different modulation formats to calculate the 

number ni of required FSs and try to find appropriate FS-blocks to accommodate the required FSs. The size and the 

starting index of each available FS-block, the average size of the available FS-blocks and the total size of the 

available FS-blocks are also viewed as part of state. In Fig. 1(b), if the agent selects the PM-QPSK instead of the 

PM-BPSK, the number ni of required FSs decreases (i.e., 4→2) and the number J of the available FS-blocks 

increases accordingly (i.e., 2→3). Although a higher level of modulation format can save spectrum resources, its 

SNR requirement gets stricter. Hence, we need to verify whether the connection that consists of the k-th path, m-th 

modulation format and j-th FS-block hypothetically-assigned to Ri meet the corresponding SNR constraint. When 

the following three cases occur: 1) the number of available candidate paths between o and d is smaller than K, 2) the 

number of available FS-blocks is smaller than J, 3) the pre-computed connection fails to satisfy the SNR constraint, 
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we would assign an array of -1 for corresponding part to keep the format of state representation consistent. Thus, 

there are K·M·J actions in the action space. If Ri is served, the agent receives a reward rt of 1; otherwise, rt is -1.  

The training of the agent adopts the framework of policy gradient reinforcement algorithm in an iteration way. 

The agent initiates Δθ = 0 at the beginning of each iteration. In each iteration, we simulate N episodes for one LR set 

to explore the probabilistic space of possible actions using the current policy and use the resulting data to improve 

the policy. The LR set includes all LRs arriving within a fixed number T of time unit. Specifically, in each time unit, 

the resources occupied by the expired requests are released. Then the agent obtains st based on the state model 

mentioned above, and decides a nonlinear RMSA scheme (i.e., action at) to serve Ri and receives a rt accordingly. 

Thus, the state st, action at and reward rt are recorded for all time units of each episode. The values of (st, at, rt) are 

used to compute Γt at each time unit of each episode. To reduce the variance originated from the gradient estimates, 

a baseline value bt is obtained by averaging Γt, where the average is taken at the same time unit across all episodes 

with the same LR set (i.e.,  
1

1
N i

t ti
b N


  ). The Δθ is calculated to optimize policy network parameter θθ+Δθ via 

gradient descent equation 
1 1

log ( , )( )
L N i i i i

t t t tt i
s a b  

 
       ,where  is the learning rate. 

4. Evaluation and Discussion  

The performance of the proposed DRL-based nonlinear RMSA is evaluated in 14-node NSFNET. The parameters 

related to physical impairments are α = 0.22 dB/km, γ = 1.3 (W·km)-1, β2 = -21.7 ps2/km, nsp = 1.58, v = 193.55 THz, 

L = 100 km. Each fiber link accommodates 100 FS’s of 12.5 GHz each. The dynamic LRs are generated according 

to Poisson process, with average arrival rate and duration being 10 and 25 time units respectively. The bandwidth of 

each LR distributed evenly within [80, 320] Gb/s. A uniform PSD G = 15 mw/THz is assumed for all connections.  

We first evaluated the impact of the DNN scale on the performance of the DRL algorithm. Fig. 3(a) shows the 

cumulative rewards collected from every 1000 LRs with different scales of DNNs, i.e., 1 hidden layer of 6 neurons 

(1×6), (1×12), (1×24) and (2×12). We can see that the rewards with three different number of neurons are very close, 

with 1 hidden layer outperforming 2 hidden layers. This is because (1×12) DNN does not encounter the overfitting 

issue compared with (2×12) case. Then we study how the (K, J) setups affect the performance of the DRL algorithm. 

Fig. 3(b) shows the cumulative rewards of K=5 is higher than that of K=1 or 3 when J=1. It indicates that increasing 

routing diversity can efficiently improve the DRL performance. We can also see that providing more options in 

spectrum (e.g., J=3) does not improve the DRL performance. This is because more flexible spectrum allocation may 

lead to severe fragmentation, and larger action space is not conductive to learning correct policies. 

       
                              (a)                                                          (b)                                                             (c) 

Fig. 3. Cumulative rewards with (a) different DNN scales, (b) different K and J, (c) LR blocking probability 

We compare the performance of our DRL algorithm with baseline algorithms, including shortest-path routing and 

first-fit spectrum allocation (SP-FF) and K-shortest-path routing and first-fit spectrum allocation (KSP-FF). Fig. 3(c) 

shows our DRL algorithm can achieve a blocking reduction of more than 44% compared with KSP-FF. It is because 

that DRL-based nonlinear RMSA agent can learn to make better decisions directly from experience interacting with 

the dynamic EON environment. 

5.Conclusion  

We propose a DRL-based dynamic RMSA scheme in nonlinear EONs. Simulation results show that the proposed 

algorithm can significantly reduce the blocking probability of more than 44%, when compared with the baselines. 
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